J. Audije-Gil, M. Canillas, F. Barroso-Barcenilla, Mélani Berrocal-Casero, A. del Campo, A. González Martín, J. Molera, O. Vallcorba, Miguel A Rodríguez, Ó. Cambra‐Moo
{"title":"深入研究现代和化石鳄鱼牙齿的显微解剖:从组织化学分析中可以推断出什么古环境和埋藏学?","authors":"J. Audije-Gil, M. Canillas, F. Barroso-Barcenilla, Mélani Berrocal-Casero, A. del Campo, A. González Martín, J. Molera, O. Vallcorba, Miguel A Rodríguez, Ó. Cambra‐Moo","doi":"10.54103/2039-4942/15607","DOIUrl":null,"url":null,"abstract":"Teeth provide information about the evolutionary pathway of an organism, its biology and habitat. This is the case even of fossilized teeth, since they have perdurable biomineralized structures, as biological apatite. The material that has been selected for this study comprises teeth from modern crocodilian individuals and extinct Cretaceous crocodylomorphs from Lo Hueco site. Microanatomy, histochemistry and crystallographic nature of enamel, dentine and cementum have been characterized by Polarized Light Microscopy, SEM-EDS, Confocal Raman Spectroscopy and SR-µXRD. A focus has been made on dentine lamination. In the fossil sample short-period incremental lines show alternate presence of dentinal tubules that has not been described previously either in living or fossil archosaur. This could be related to influence of environmental circadian rhythms in the abundance, size and/or activity of cells depositing dentine in the day-night cycle. Regarding histochemical and crystallographic compositions, the major and mostly unique phase is HA, but in the case of fossil teeth, a secondary phase identified as hematite appears locally between discontinuities of the material. Incremental lines would not be related to variation in chemical composition and furthermore do not present different HA crystallographic nature (different directions of HA or different crystallite sizes) either. Only small intensity oscillations are observed in the fossil sample by SR-µXRD which are compatible with the alternating abundance of dentinal tubules. Crystallinity differences between modern and fossil material, as crystallite size and presence of CO32- groups could be explained by postdepositional processes.\n ","PeriodicalId":54451,"journal":{"name":"Rivista Italiana Di Paleontologia E Stratigrafia","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GOING DEEPER INTO MODERN AND FOSSIL CROCODILIAN TOOTH MICROANATOMY: WHAT CAN BE INFERRED OF PALAEOENVIRONMENT AND TAPHONOMY FROM HISTOCHEMICAL ANALYSES?\",\"authors\":\"J. Audije-Gil, M. Canillas, F. Barroso-Barcenilla, Mélani Berrocal-Casero, A. del Campo, A. González Martín, J. Molera, O. Vallcorba, Miguel A Rodríguez, Ó. Cambra‐Moo\",\"doi\":\"10.54103/2039-4942/15607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Teeth provide information about the evolutionary pathway of an organism, its biology and habitat. This is the case even of fossilized teeth, since they have perdurable biomineralized structures, as biological apatite. The material that has been selected for this study comprises teeth from modern crocodilian individuals and extinct Cretaceous crocodylomorphs from Lo Hueco site. Microanatomy, histochemistry and crystallographic nature of enamel, dentine and cementum have been characterized by Polarized Light Microscopy, SEM-EDS, Confocal Raman Spectroscopy and SR-µXRD. A focus has been made on dentine lamination. In the fossil sample short-period incremental lines show alternate presence of dentinal tubules that has not been described previously either in living or fossil archosaur. This could be related to influence of environmental circadian rhythms in the abundance, size and/or activity of cells depositing dentine in the day-night cycle. Regarding histochemical and crystallographic compositions, the major and mostly unique phase is HA, but in the case of fossil teeth, a secondary phase identified as hematite appears locally between discontinuities of the material. Incremental lines would not be related to variation in chemical composition and furthermore do not present different HA crystallographic nature (different directions of HA or different crystallite sizes) either. Only small intensity oscillations are observed in the fossil sample by SR-µXRD which are compatible with the alternating abundance of dentinal tubules. Crystallinity differences between modern and fossil material, as crystallite size and presence of CO32- groups could be explained by postdepositional processes.\\n \",\"PeriodicalId\":54451,\"journal\":{\"name\":\"Rivista Italiana Di Paleontologia E Stratigrafia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rivista Italiana Di Paleontologia E Stratigrafia\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.54103/2039-4942/15607\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rivista Italiana Di Paleontologia E Stratigrafia","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.54103/2039-4942/15607","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
GOING DEEPER INTO MODERN AND FOSSIL CROCODILIAN TOOTH MICROANATOMY: WHAT CAN BE INFERRED OF PALAEOENVIRONMENT AND TAPHONOMY FROM HISTOCHEMICAL ANALYSES?
Teeth provide information about the evolutionary pathway of an organism, its biology and habitat. This is the case even of fossilized teeth, since they have perdurable biomineralized structures, as biological apatite. The material that has been selected for this study comprises teeth from modern crocodilian individuals and extinct Cretaceous crocodylomorphs from Lo Hueco site. Microanatomy, histochemistry and crystallographic nature of enamel, dentine and cementum have been characterized by Polarized Light Microscopy, SEM-EDS, Confocal Raman Spectroscopy and SR-µXRD. A focus has been made on dentine lamination. In the fossil sample short-period incremental lines show alternate presence of dentinal tubules that has not been described previously either in living or fossil archosaur. This could be related to influence of environmental circadian rhythms in the abundance, size and/or activity of cells depositing dentine in the day-night cycle. Regarding histochemical and crystallographic compositions, the major and mostly unique phase is HA, but in the case of fossil teeth, a secondary phase identified as hematite appears locally between discontinuities of the material. Incremental lines would not be related to variation in chemical composition and furthermore do not present different HA crystallographic nature (different directions of HA or different crystallite sizes) either. Only small intensity oscillations are observed in the fossil sample by SR-µXRD which are compatible with the alternating abundance of dentinal tubules. Crystallinity differences between modern and fossil material, as crystallite size and presence of CO32- groups could be explained by postdepositional processes.
期刊介绍:
The Rivista Italiana di Paleontologia e Stratigrafia was founded in 1895. It publishes original papers dealing with all fields of paleontology and of stratigraphy, from Italy and the Mediterranean to the Tethys, as well across the globe from China to North America.