温带森林灰化带土壤团聚体各组分中总汞的分布

IF 2 Q3 SOIL SCIENCE
Antía Gómez Armesto, Lucía Bibián-Núñez, C. Campillo-Cora, X. Pontevedra-Pombal, M. Arias-Estévez, J. Nóvoa-Muñoz
{"title":"温带森林灰化带土壤团聚体各组分中总汞的分布","authors":"Antía Gómez Armesto, Lucía Bibián-Núñez, C. Campillo-Cora, X. Pontevedra-Pombal, M. Arias-Estévez, J. Nóvoa-Muñoz","doi":"10.3232/SJSS.2018.V8.N1.05","DOIUrl":null,"url":null,"abstract":"This study determined the distribution of total Hg (HgT) among aggregate size fractions in the A, E, Bh and Bs horizons of a representative temperate forest podzol. The aggregate distribution was dominated by the coarse sand size fraction (average of 55%) followed by fine sand (29%), fine silt (10%), coarse silt (4%) and clay (2%). In general, HgT mean values increased as the aggregate size become smaller: clay (170 ng g-1) > fine silt (130 ng g-1) > coarse silt (80 ng g-1) > fine sand (32 ng g-1) > coarse sand (14 ng g-1). Total Hg enrichment in clay-sized aggregates ranged from 2 to 11 times higher than the values shown by the bulk soil (< 2 mm). The accumulation of HgT in the finer size aggregates was closely related to total organic C, Na-pyrophosphate extracted C, metal (Al, Fe)-humus complexes and Al and Fe oxyhydroxides. Indeed, these parameters varied significantly (p < 0.05) with the aggregate size and their highest values were found in the finer fractions. This suggested the role of these soil compounds in the increase of the specific surface area per mass unit and negative charges in the smallest aggregates, favouring Hg retention. Mercury accumulation factor (HgAF) values reached up to 10.8 in the clay size aggregates, being close to 1 in sand size fractions. Regarding Hg enrichment factors (HgEF), they were < 4 (“moderate pollution” category) in most of the horizons and aggregate sizes. Grain size mass loading (GSFHg) revealed that finer fractions had a higher Hg loading than their mass fractions, with a notable contribution of fine silt which made up > 50% of HgT in Bh and Bs horizons. The potential ecological risk index (PERIHg) increased as the aggregate size decreased, with the highest values in the illuvial horizons (45-903) and lowest in the E horizon (3-363). Heterogeneous distribution of Hg in the soil aggregate size fractions must be considered for Hg determination for purposes such as critical loads, background values or environmental risk indices. In addition, Hg accumulation in finer aggregates could be of concern due to its potential mobility in forest soils, either transferred by leaching to groundwater and freshwaters or mobilized by runoff in surface horizons.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Total mercury distribution among soil aggregate size fractions in a temperate forest podzol\",\"authors\":\"Antía Gómez Armesto, Lucía Bibián-Núñez, C. Campillo-Cora, X. Pontevedra-Pombal, M. Arias-Estévez, J. Nóvoa-Muñoz\",\"doi\":\"10.3232/SJSS.2018.V8.N1.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study determined the distribution of total Hg (HgT) among aggregate size fractions in the A, E, Bh and Bs horizons of a representative temperate forest podzol. The aggregate distribution was dominated by the coarse sand size fraction (average of 55%) followed by fine sand (29%), fine silt (10%), coarse silt (4%) and clay (2%). In general, HgT mean values increased as the aggregate size become smaller: clay (170 ng g-1) > fine silt (130 ng g-1) > coarse silt (80 ng g-1) > fine sand (32 ng g-1) > coarse sand (14 ng g-1). Total Hg enrichment in clay-sized aggregates ranged from 2 to 11 times higher than the values shown by the bulk soil (< 2 mm). The accumulation of HgT in the finer size aggregates was closely related to total organic C, Na-pyrophosphate extracted C, metal (Al, Fe)-humus complexes and Al and Fe oxyhydroxides. Indeed, these parameters varied significantly (p < 0.05) with the aggregate size and their highest values were found in the finer fractions. This suggested the role of these soil compounds in the increase of the specific surface area per mass unit and negative charges in the smallest aggregates, favouring Hg retention. Mercury accumulation factor (HgAF) values reached up to 10.8 in the clay size aggregates, being close to 1 in sand size fractions. Regarding Hg enrichment factors (HgEF), they were < 4 (“moderate pollution” category) in most of the horizons and aggregate sizes. Grain size mass loading (GSFHg) revealed that finer fractions had a higher Hg loading than their mass fractions, with a notable contribution of fine silt which made up > 50% of HgT in Bh and Bs horizons. The potential ecological risk index (PERIHg) increased as the aggregate size decreased, with the highest values in the illuvial horizons (45-903) and lowest in the E horizon (3-363). Heterogeneous distribution of Hg in the soil aggregate size fractions must be considered for Hg determination for purposes such as critical loads, background values or environmental risk indices. In addition, Hg accumulation in finer aggregates could be of concern due to its potential mobility in forest soils, either transferred by leaching to groundwater and freshwaters or mobilized by runoff in surface horizons.\",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3232/SJSS.2018.V8.N1.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3232/SJSS.2018.V8.N1.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 8

摘要

本研究确定了一种具有代表性的温带森林恶唑的A、E、Bh和Bs层中总汞(HgT)在团聚体粒级中的分布。骨料分布以粗砂粒级(平均55%)为主,其次是细砂(29%)、细粉土(10%)、粗粉土(4%)和粘土(2%)。一般来说,HgT平均值随着骨料粒径的减小而增加:粘土(170 ng g-1)>细粉土(130 ng g-1。粘土大小的团聚体中的总汞富集度是大块土壤(<2 mm)所示值的2至11倍。HgT在细粒团聚体中的积累与总有机碳、焦磷酸钠提取的碳、金属(Al,Fe)-腐殖质复合物以及Al和Fe的氢氧化物密切相关。事实上,这些参数随骨料粒径的变化而显著(p<0.05),其最高值出现在较细的颗粒中。这表明这些土壤化合物在增加每质量单位的比表面积和最小团聚体中的负电荷方面发挥了作用,有利于汞的保留。粘土粒级骨料中的汞累积因子(HgAF)值高达10.8,砂级骨料中接近1。关于汞富集因子(HgEF),在大多数层位和骨料尺寸中,它们均<4(“中度污染”类别)。粒度质量负荷(GSFHg)表明,较细的组分比其质量组分具有更高的Hg负荷,其中细粉土的显著贡献占Bh和Bs层HgT的50%以上。潜在生态风险指数(PERIHg)随着骨料尺寸的减小而增加,其中冲积层的值最高(45-903),E层的值最低(3-363)。为了临界负荷、背景值或环境风险指数等目的,在测定汞时,必须考虑土壤团聚体粒级中汞的不均匀分布。此外,由于汞在森林土壤中的潜在流动性,无论是通过浸出转移到地下水和淡水中,还是通过地表径流转移,细骨料中的汞积累都可能引起关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total mercury distribution among soil aggregate size fractions in a temperate forest podzol
This study determined the distribution of total Hg (HgT) among aggregate size fractions in the A, E, Bh and Bs horizons of a representative temperate forest podzol. The aggregate distribution was dominated by the coarse sand size fraction (average of 55%) followed by fine sand (29%), fine silt (10%), coarse silt (4%) and clay (2%). In general, HgT mean values increased as the aggregate size become smaller: clay (170 ng g-1) > fine silt (130 ng g-1) > coarse silt (80 ng g-1) > fine sand (32 ng g-1) > coarse sand (14 ng g-1). Total Hg enrichment in clay-sized aggregates ranged from 2 to 11 times higher than the values shown by the bulk soil (< 2 mm). The accumulation of HgT in the finer size aggregates was closely related to total organic C, Na-pyrophosphate extracted C, metal (Al, Fe)-humus complexes and Al and Fe oxyhydroxides. Indeed, these parameters varied significantly (p < 0.05) with the aggregate size and their highest values were found in the finer fractions. This suggested the role of these soil compounds in the increase of the specific surface area per mass unit and negative charges in the smallest aggregates, favouring Hg retention. Mercury accumulation factor (HgAF) values reached up to 10.8 in the clay size aggregates, being close to 1 in sand size fractions. Regarding Hg enrichment factors (HgEF), they were < 4 (“moderate pollution” category) in most of the horizons and aggregate sizes. Grain size mass loading (GSFHg) revealed that finer fractions had a higher Hg loading than their mass fractions, with a notable contribution of fine silt which made up > 50% of HgT in Bh and Bs horizons. The potential ecological risk index (PERIHg) increased as the aggregate size decreased, with the highest values in the illuvial horizons (45-903) and lowest in the E horizon (3-363). Heterogeneous distribution of Hg in the soil aggregate size fractions must be considered for Hg determination for purposes such as critical loads, background values or environmental risk indices. In addition, Hg accumulation in finer aggregates could be of concern due to its potential mobility in forest soils, either transferred by leaching to groundwater and freshwaters or mobilized by runoff in surface horizons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
13
期刊介绍: The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信