曲面模空间中的虫洞

IF 1.2 1区 数学 Q1 MATHEMATICS
G. Urz'ua, Nicol'as Vilches
{"title":"曲面模空间中的虫洞","authors":"G. Urz'ua, Nicol'as Vilches","doi":"10.14231/ag-2022-002","DOIUrl":null,"url":null,"abstract":"We study a certain wormholing phenomenon that takes place in the Kollár–Shepherd-Barron–Alexeev (KSBA) compactification of the moduli space of surfaces of general type. It occurs because of the appearance of particular extremal P-resolutions in surfaces on the KBSA boundary. We state a general wormhole conjecture, and we prove it for a wide range of cases. At the end, we discuss some topological properties and open questions.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On wormholes in the moduli space of surfaces\",\"authors\":\"G. Urz'ua, Nicol'as Vilches\",\"doi\":\"10.14231/ag-2022-002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a certain wormholing phenomenon that takes place in the Kollár–Shepherd-Barron–Alexeev (KSBA) compactification of the moduli space of surfaces of general type. It occurs because of the appearance of particular extremal P-resolutions in surfaces on the KBSA boundary. We state a general wormhole conjecture, and we prove it for a wide range of cases. At the end, we discuss some topological properties and open questions.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2022-002\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2022-002","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了一般类型表面模量空间的Kollár–Shepherd-Barron–Alexeev(KSBA)紧致化中发生的某种虫洞现象。它的出现是因为在KBSA边界上的表面中出现了特定的极值P分辨率。我们陈述了一个一般的虫洞猜想,并在广泛的情况下证明了它。最后,我们讨论了一些拓扑性质和有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On wormholes in the moduli space of surfaces
We study a certain wormholing phenomenon that takes place in the Kollár–Shepherd-Barron–Alexeev (KSBA) compactification of the moduli space of surfaces of general type. It occurs because of the appearance of particular extremal P-resolutions in surfaces on the KBSA boundary. We state a general wormhole conjecture, and we prove it for a wide range of cases. At the end, we discuss some topological properties and open questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信