{"title":"从实验活动看无点几何基础","authors":"Giangiacomo Gerla, A. Miranda","doi":"10.1080/25742558.2020.1761001","DOIUrl":null,"url":null,"abstract":"Abstract Researches in “point-free geometry”, aiming to found geometry without using points as primitive entities, have always paid attention only to the logical aspects. In this paper, we propose a point-free axiomatization of geometry taking into account not only the logical value of this approach but also, for the first time, its educational potentialities. We introduce primitive entities and axioms, as a sort of theoretical guise that is grafted onto intuition, looking at the educational value of the deriving theory. In our approach the notions of convexity and half-planes play a crucial role. Indeed, starting from the Boolean algebra of regular closed subsets of ℝn , representing, in an excellent natural way, the idea of region, we introduce an n-dimensional prototype of point-free geometry by using the primitive notion of convexity. This enable us to define Re-half-planes, Re-lines, Re-points, polygons, and to introduce axioms making not only meaningful all the given definitions but also providing adequate tools from a didactic point of view. The result is a theory, or a seed of theory, suitable to improve the teaching and the learning of geometry.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2020.1761001","citationCount":"0","resultStr":"{\"title\":\"Point-free foundation of geometry looking at laboratory activities\",\"authors\":\"Giangiacomo Gerla, A. Miranda\",\"doi\":\"10.1080/25742558.2020.1761001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Researches in “point-free geometry”, aiming to found geometry without using points as primitive entities, have always paid attention only to the logical aspects. In this paper, we propose a point-free axiomatization of geometry taking into account not only the logical value of this approach but also, for the first time, its educational potentialities. We introduce primitive entities and axioms, as a sort of theoretical guise that is grafted onto intuition, looking at the educational value of the deriving theory. In our approach the notions of convexity and half-planes play a crucial role. Indeed, starting from the Boolean algebra of regular closed subsets of ℝn , representing, in an excellent natural way, the idea of region, we introduce an n-dimensional prototype of point-free geometry by using the primitive notion of convexity. This enable us to define Re-half-planes, Re-lines, Re-points, polygons, and to introduce axioms making not only meaningful all the given definitions but also providing adequate tools from a didactic point of view. The result is a theory, or a seed of theory, suitable to improve the teaching and the learning of geometry.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2020.1761001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2020.1761001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2020.1761001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Point-free foundation of geometry looking at laboratory activities
Abstract Researches in “point-free geometry”, aiming to found geometry without using points as primitive entities, have always paid attention only to the logical aspects. In this paper, we propose a point-free axiomatization of geometry taking into account not only the logical value of this approach but also, for the first time, its educational potentialities. We introduce primitive entities and axioms, as a sort of theoretical guise that is grafted onto intuition, looking at the educational value of the deriving theory. In our approach the notions of convexity and half-planes play a crucial role. Indeed, starting from the Boolean algebra of regular closed subsets of ℝn , representing, in an excellent natural way, the idea of region, we introduce an n-dimensional prototype of point-free geometry by using the primitive notion of convexity. This enable us to define Re-half-planes, Re-lines, Re-points, polygons, and to introduce axioms making not only meaningful all the given definitions but also providing adequate tools from a didactic point of view. The result is a theory, or a seed of theory, suitable to improve the teaching and the learning of geometry.