代数的可操作变数中的结合性与宇宙积

IF 0.6 Q3 MATHEMATICS
Ulo Reimaa, T. Linden, Corentin Vienne
{"title":"代数的可操作变数中的结合性与宇宙积","authors":"Ulo Reimaa, T. Linden, Corentin Vienne","doi":"10.1215/00192082-10678862","DOIUrl":null,"url":null,"abstract":"In this article, we characterise the operadic variety of commutative associative algebras over a field via a (categorical) condition: the associativity of the so-called cosmash product. This condition, which is closely related to commutator theory, is quite strong: for example, groups do not satisfy it. However, in the case of commutative associative algebras, the cosmash product is nothing more than the tensor product; which explains why in this case it is associative. We prove that in the setting of operadic varieties of algebras over a field, it is the only example. Further examples in the non-operadic case are also discussed.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Associativity and the cosmash product in operadic varieties of algebras\",\"authors\":\"Ulo Reimaa, T. Linden, Corentin Vienne\",\"doi\":\"10.1215/00192082-10678862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we characterise the operadic variety of commutative associative algebras over a field via a (categorical) condition: the associativity of the so-called cosmash product. This condition, which is closely related to commutator theory, is quite strong: for example, groups do not satisfy it. However, in the case of commutative associative algebras, the cosmash product is nothing more than the tensor product; which explains why in this case it is associative. We prove that in the setting of operadic varieties of algebras over a field, it is the only example. Further examples in the non-operadic case are also discussed.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10678862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10678862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在这篇文章中,我们通过一个(范畴)条件:所谓的宇宙积的结合性来描述域上交换结合代数的操作变数。这个与换向子理论密切相关的条件是非常强的:例如,群不满足它。然而,在交换结合代数的情况下,宇宙积只不过是张量积;这就解释了为什么在这种情况下它是结合律。我们证明了在域上代数的操作变集中,它是唯一的例子。还讨论了非操作符情况下的进一步示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Associativity and the cosmash product in operadic varieties of algebras
In this article, we characterise the operadic variety of commutative associative algebras over a field via a (categorical) condition: the associativity of the so-called cosmash product. This condition, which is closely related to commutator theory, is quite strong: for example, groups do not satisfy it. However, in the case of commutative associative algebras, the cosmash product is nothing more than the tensor product; which explains why in this case it is associative. We prove that in the setting of operadic varieties of algebras over a field, it is the only example. Further examples in the non-operadic case are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信