{"title":"关于Heisenberg群上具有临界增长的$p$-Laplaccian-Kirchhoff-Schrödinger-Poisson型系统","authors":"Shujie Bai, Yueqiang Song, Dušan D. Repovš","doi":"10.3934/era.2023292","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the Heisenberg group of the following form:\n\n \\begin{document}$ \\begin{equation*} \\left\\{ \\begin{array}{lll} {-(a+b\\int_{\\Omega}|\\nabla_{H} u|^{p}d\\xi)\\Delta_{H, p}u-\\mu\\phi |u|^{p-2}u} = \\lambda |u|^{q-2}u+|u|^{Q^{\\ast}-2}u &\\mbox{in}\\ \\Omega, \\\\ -\\Delta_{H}\\phi = |u|^{p} &\\mbox{in}\\ \\Omega, \\\\ u = \\phi = 0 &\\mbox{on}\\ \\partial\\Omega, \\end{array} \\right. \\end{equation*} $\\end{document} \nwhere $ a, b $ are positive real numbers, $ \\Omega\\subset \\mathbb{H}^N $ is a bounded region with smooth boundary, $ 1 < p < Q $, $ Q = 2N + 2 $ is the homogeneous dimension of the Heisenberg group $ \\mathbb{H}^N $, $ Q^{\\ast} = \\frac{pQ}{Q-p} $, $ q\\in(2p, Q^{\\ast}) $ and $ \\Delta_{H, p}u = \\mbox{div}(|\\nabla_{H} u|^{p-2}\\nabla_{H} u) $ is the $ p $-horizontal Laplacian. Under some appropriate conditions for the parameters $ \\mu $ and $ \\lambda $, we establish existence and multiplicity results for the system above. To some extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear Anal., 2022).","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On $ p $-Laplacian Kirchhoff-Schrödinger-Poisson type systems with critical growth on the Heisenberg group\",\"authors\":\"Shujie Bai, Yueqiang Song, Dušan D. Repovš\",\"doi\":\"10.3934/era.2023292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the Heisenberg group of the following form:\\n\\n \\\\begin{document}$ \\\\begin{equation*} \\\\left\\\\{ \\\\begin{array}{lll} {-(a+b\\\\int_{\\\\Omega}|\\\\nabla_{H} u|^{p}d\\\\xi)\\\\Delta_{H, p}u-\\\\mu\\\\phi |u|^{p-2}u} = \\\\lambda |u|^{q-2}u+|u|^{Q^{\\\\ast}-2}u &\\\\mbox{in}\\\\ \\\\Omega, \\\\\\\\ -\\\\Delta_{H}\\\\phi = |u|^{p} &\\\\mbox{in}\\\\ \\\\Omega, \\\\\\\\ u = \\\\phi = 0 &\\\\mbox{on}\\\\ \\\\partial\\\\Omega, \\\\end{array} \\\\right. \\\\end{equation*} $\\\\end{document} \\nwhere $ a, b $ are positive real numbers, $ \\\\Omega\\\\subset \\\\mathbb{H}^N $ is a bounded region with smooth boundary, $ 1 < p < Q $, $ Q = 2N + 2 $ is the homogeneous dimension of the Heisenberg group $ \\\\mathbb{H}^N $, $ Q^{\\\\ast} = \\\\frac{pQ}{Q-p} $, $ q\\\\in(2p, Q^{\\\\ast}) $ and $ \\\\Delta_{H, p}u = \\\\mbox{div}(|\\\\nabla_{H} u|^{p-2}\\\\nabla_{H} u) $ is the $ p $-horizontal Laplacian. Under some appropriate conditions for the parameters $ \\\\mu $ and $ \\\\lambda $, we establish existence and multiplicity results for the system above. To some extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear Anal., 2022).\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023292\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023292","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On $ p $-Laplacian Kirchhoff-Schrödinger-Poisson type systems with critical growth on the Heisenberg group
In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the Heisenberg group of the following form:
\begin{document}$ \begin{equation*} \left\{ \begin{array}{lll} {-(a+b\int_{\Omega}|\nabla_{H} u|^{p}d\xi)\Delta_{H, p}u-\mu\phi |u|^{p-2}u} = \lambda |u|^{q-2}u+|u|^{Q^{\ast}-2}u &\mbox{in}\ \Omega, \\ -\Delta_{H}\phi = |u|^{p} &\mbox{in}\ \Omega, \\ u = \phi = 0 &\mbox{on}\ \partial\Omega, \end{array} \right. \end{equation*} $\end{document}
where $ a, b $ are positive real numbers, $ \Omega\subset \mathbb{H}^N $ is a bounded region with smooth boundary, $ 1 < p < Q $, $ Q = 2N + 2 $ is the homogeneous dimension of the Heisenberg group $ \mathbb{H}^N $, $ Q^{\ast} = \frac{pQ}{Q-p} $, $ q\in(2p, Q^{\ast}) $ and $ \Delta_{H, p}u = \mbox{div}(|\nabla_{H} u|^{p-2}\nabla_{H} u) $ is the $ p $-horizontal Laplacian. Under some appropriate conditions for the parameters $ \mu $ and $ \lambda $, we establish existence and multiplicity results for the system above. To some extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear Anal., 2022).