{"title":"利用Mirkovi\\ c—Vybornov同构计算MV循环的聚变积","authors":"R. Bai, Anne Dranowski, J. Kamnitzer","doi":"10.4171/JCA/69","DOIUrl":null,"url":null,"abstract":"The fusion of two Mirkovic-Vilonen cycles is a degeneration of their product, defined using the Beilinson-Drinfeld Grassmannian. In this paper, we put in place a conceptually elementary approach to computing this product in type $A$. We do so by transferring the problem to a fusion of generalized orbital varieties using the Mirkovic-Vybornov isomorphism. As an application, we explicitly compute all cluster exchange relations in the coordinate ring of the upper-triangular subgroup of $GL_4$, confirming that all the cluster variables are contained in the Mirkovic-Vilonen basis.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computing fusion products of MV cycles using the Mirkovi\\\\'c--Vybornov isomorphism\",\"authors\":\"R. Bai, Anne Dranowski, J. Kamnitzer\",\"doi\":\"10.4171/JCA/69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fusion of two Mirkovic-Vilonen cycles is a degeneration of their product, defined using the Beilinson-Drinfeld Grassmannian. In this paper, we put in place a conceptually elementary approach to computing this product in type $A$. We do so by transferring the problem to a fusion of generalized orbital varieties using the Mirkovic-Vybornov isomorphism. As an application, we explicitly compute all cluster exchange relations in the coordinate ring of the upper-triangular subgroup of $GL_4$, confirming that all the cluster variables are contained in the Mirkovic-Vilonen basis.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JCA/69\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/69","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
两个Mirkovic-Vilonen循环的融合是它们乘积的退化,使用Beilinson-Drinfeld Grassmannian来定义。在本文中,我们提出了一种概念上基本的方法来计算类型为$ a $的这个乘积。我们通过使用Mirkovic-Vybornov同构将问题转化为广义轨道变体的融合来做到这一点。作为应用,我们显式计算了$GL_4$上三角子群的坐标环上的所有簇交换关系,确认了所有簇变量都包含在Mirkovic-Vilonen基中。
Computing fusion products of MV cycles using the Mirkovi\'c--Vybornov isomorphism
The fusion of two Mirkovic-Vilonen cycles is a degeneration of their product, defined using the Beilinson-Drinfeld Grassmannian. In this paper, we put in place a conceptually elementary approach to computing this product in type $A$. We do so by transferring the problem to a fusion of generalized orbital varieties using the Mirkovic-Vybornov isomorphism. As an application, we explicitly compute all cluster exchange relations in the coordinate ring of the upper-triangular subgroup of $GL_4$, confirming that all the cluster variables are contained in the Mirkovic-Vilonen basis.