谱负lsamvy过程的广义尺度函数

Pub Date : 2022-09-30 DOI:10.30757/ALEA.v20-24
J. Contreras, V. Rivero
{"title":"谱负lsamvy过程的广义尺度函数","authors":"J. Contreras, V. Rivero","doi":"10.30757/ALEA.v20-24","DOIUrl":null,"url":null,"abstract":"For a spectrally negative L\\'evy process, scale functions appear in the solution of two-sided exit problems, and in particular in relation with the Laplace transform of the first time it exits a closed interval. In this paper, we consider the Laplace transform of more general functionals, which can depend simultaneously on the values of the process and its supremum up to the exit time. These quantities will be expressed in terms of generalized scale functions, which can be defined using excursion theory. In the case the functional does not depend on the supremum, these scale functions coincide with the ones found on the literature, and therefore the results in this work are an extension of them.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized scale functions for spectrally negative Lévy processes\",\"authors\":\"J. Contreras, V. Rivero\",\"doi\":\"10.30757/ALEA.v20-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a spectrally negative L\\\\'evy process, scale functions appear in the solution of two-sided exit problems, and in particular in relation with the Laplace transform of the first time it exits a closed interval. In this paper, we consider the Laplace transform of more general functionals, which can depend simultaneously on the values of the process and its supremum up to the exit time. These quantities will be expressed in terms of generalized scale functions, which can be defined using excursion theory. In the case the functional does not depend on the supremum, these scale functions coincide with the ones found on the literature, and therefore the results in this work are an extension of them.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/ALEA.v20-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.v20-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于谱负的L\'evy过程,尺度函数出现在双边出口问题的解中,特别是与它第一次退出封闭区间的拉普拉斯变换有关。在本文中,我们考虑更一般的泛函的拉普拉斯变换,它可以同时依赖于过程的值和它的极值直到退出时间。这些量将用广义尺度函数来表示,它可以用偏移理论来定义。在函数不依赖于最高的情况下,这些尺度函数与文献中发现的尺度函数一致,因此本工作的结果是它们的延伸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized scale functions for spectrally negative Lévy processes
For a spectrally negative L\'evy process, scale functions appear in the solution of two-sided exit problems, and in particular in relation with the Laplace transform of the first time it exits a closed interval. In this paper, we consider the Laplace transform of more general functionals, which can depend simultaneously on the values of the process and its supremum up to the exit time. These quantities will be expressed in terms of generalized scale functions, which can be defined using excursion theory. In the case the functional does not depend on the supremum, these scale functions coincide with the ones found on the literature, and therefore the results in this work are an extension of them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信