分数阶扩散方程变阶检测的封闭方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Masaru Ikehata, Yavar Kian
{"title":"分数阶扩散方程变阶检测的封闭方法","authors":"Masaru Ikehata, Yavar Kian","doi":"10.3934/ipi.2022036","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a new type of inverse obstacle problem governed by a variable-order time-fraction diffusion equation in a bounded domain. The unknown obstacle is a region where the space dependent variable-order of fractional time derivative of the governing equation deviates from a known homogeneous background one. The observation data is given by the Neumann data of the solution of the governing equation for a specially designed Dirichlet data. Under a suitable jump condition on the deviation, it is shown that the most recent version of the time domain enclosure method enables one to extract information about the geometry of the obstacle and a qualitative nature of the jump, from the observation data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The enclosure method for the detection of variable order in fractional diffusion equations\",\"authors\":\"Masaru Ikehata, Yavar Kian\",\"doi\":\"10.3934/ipi.2022036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with a new type of inverse obstacle problem governed by a variable-order time-fraction diffusion equation in a bounded domain. The unknown obstacle is a region where the space dependent variable-order of fractional time derivative of the governing equation deviates from a known homogeneous background one. The observation data is given by the Neumann data of the solution of the governing equation for a specially designed Dirichlet data. Under a suitable jump condition on the deviation, it is shown that the most recent version of the time domain enclosure method enables one to extract information about the geometry of the obstacle and a qualitative nature of the jump, from the observation data.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2022036\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在有界区域上,研究一类由变阶时间分数扩散方程控制的逆障碍问题。未知障碍是控制方程的分数阶时间导数的空间相关变阶偏离已知齐次背景的区域。观测数据由特殊设计的狄利克雷数据的控制方程解的诺伊曼数据给出。在适当的偏差跳跃条件下,最新版本的时域封闭方法可以从观测数据中提取有关障碍物几何形状和跳跃定性性质的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The enclosure method for the detection of variable order in fractional diffusion equations
This paper is concerned with a new type of inverse obstacle problem governed by a variable-order time-fraction diffusion equation in a bounded domain. The unknown obstacle is a region where the space dependent variable-order of fractional time derivative of the governing equation deviates from a known homogeneous background one. The observation data is given by the Neumann data of the solution of the governing equation for a specially designed Dirichlet data. Under a suitable jump condition on the deviation, it is shown that the most recent version of the time domain enclosure method enables one to extract information about the geometry of the obstacle and a qualitative nature of the jump, from the observation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信