边界元晶体塑性法

IF 1 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
I. Benedetti, V. Gulizzi, V. Mallardo
{"title":"边界元晶体塑性法","authors":"I. Benedetti, V. Gulizzi, V. Mallardo","doi":"10.1142/S1756973717400030","DOIUrl":null,"url":null,"abstract":"A three-dimensional (3D) boundary element method for small strains crystal plasticity is described. The method, developed for polycrystalline aggregates, makes use of a set of boundary integral equations for modeling the individual grains, which are represented as anisotropic elasto-plastic domains. Crystal plasticity is modeled using an initial strains boundary integral approach. The integration of strongly singular volume integrals in the anisotropic elasto-plastic grain-boundary equations are discussed. Voronoi-tessellation micro-morphologies are discretized using nonstructured boundary and volume meshes. A grain-boundary incremental/iterative algorithm, with rate-dependent flow and hardening rules, is developed and discussed. The method has been assessed through several numerical simulations, which confirm robustness and accuracy.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973717400030","citationCount":"3","resultStr":"{\"title\":\"Boundary Element Crystal Plasticity Method\",\"authors\":\"I. Benedetti, V. Gulizzi, V. Mallardo\",\"doi\":\"10.1142/S1756973717400030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A three-dimensional (3D) boundary element method for small strains crystal plasticity is described. The method, developed for polycrystalline aggregates, makes use of a set of boundary integral equations for modeling the individual grains, which are represented as anisotropic elasto-plastic domains. Crystal plasticity is modeled using an initial strains boundary integral approach. The integration of strongly singular volume integrals in the anisotropic elasto-plastic grain-boundary equations are discussed. Voronoi-tessellation micro-morphologies are discretized using nonstructured boundary and volume meshes. A grain-boundary incremental/iterative algorithm, with rate-dependent flow and hardening rules, is developed and discussed. The method has been assessed through several numerical simulations, which confirm robustness and accuracy.\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1756973717400030\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1756973717400030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1756973717400030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

介绍了一种小应变晶体塑性的三维边界元方法。该方法是针对多晶聚集体开发的,它利用一组边界积分方程来模拟单个颗粒,这些颗粒被表示为各向异性弹塑性域。晶体塑性模型采用初始应变边界积分法。讨论了各向异性弹塑性晶界方程中强奇异体积积分的积分问题。Voronoi-tessellation微形态使用非结构化边界和体积网格进行离散化。提出并讨论了一种具有速率相关流动和硬化规则的晶界增量/迭代算法。通过数值模拟验证了该方法的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary Element Crystal Plasticity Method
A three-dimensional (3D) boundary element method for small strains crystal plasticity is described. The method, developed for polycrystalline aggregates, makes use of a set of boundary integral equations for modeling the individual grains, which are represented as anisotropic elasto-plastic domains. Crystal plasticity is modeled using an initial strains boundary integral approach. The integration of strongly singular volume integrals in the anisotropic elasto-plastic grain-boundary equations are discussed. Voronoi-tessellation micro-morphologies are discretized using nonstructured boundary and volume meshes. A grain-boundary incremental/iterative algorithm, with rate-dependent flow and hardening rules, is developed and discussed. The method has been assessed through several numerical simulations, which confirm robustness and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multiscale Modelling
Journal of Multiscale Modelling MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信