-垂直的宽子类别

Pub Date : 2023-08-22 DOI:10.1017/nmj.2023.16
A. B. Buan, Eric J. Hanson
{"title":"-垂直的宽子类别","authors":"A. B. Buan, Eric J. Hanson","doi":"10.1017/nmj.2023.16","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline2.png\" />\n\t\t<jats:tex-math>\n$\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a finite-dimensional algebra. A wide subcategory of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline3.png\" />\n\t\t<jats:tex-math>\n$\\mathsf {mod}\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is called <jats:italic>left finite</jats:italic> if the smallest torsion class containing it is functorially finite. In this article, we prove that the wide subcategories of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline4.png\" />\n\t\t<jats:tex-math>\n$\\mathsf {mod}\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> arising from <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline5.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tilting reduction are precisely the Serre subcategories of left-finite wide subcategories. As a consequence, we show that the class of such subcategories is closed under further <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline6.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tilting reduction. This leads to a natural way to extend the definition of the “<jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline7.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-cluster morphism category” of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline8.png\" />\n\t\t<jats:tex-math>\n$\\Lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> to arbitrary finite-dimensional algebras. This category was recently constructed by Buan–Marsh in the <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000168_inline9.png\" />\n\t\t<jats:tex-math>\n$\\tau $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-tilting finite case and by Igusa–Todorov in the hereditary case.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"-PERPENDICULAR WIDE SUBCATEGORIES\",\"authors\":\"A. B. Buan, Eric J. Hanson\",\"doi\":\"10.1017/nmj.2023.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>Let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000168_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\Lambda $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> be a finite-dimensional algebra. A wide subcategory of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000168_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathsf {mod}\\\\Lambda $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is called <jats:italic>left finite</jats:italic> if the smallest torsion class containing it is functorially finite. In this article, we prove that the wide subcategories of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000168_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathsf {mod}\\\\Lambda $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> arising from <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000168_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\tau $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-tilting reduction are precisely the Serre subcategories of left-finite wide subcategories. As a consequence, we show that the class of such subcategories is closed under further <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000168_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\tau $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-tilting reduction. This leads to a natural way to extend the definition of the “<jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000168_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\tau $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-cluster morphism category” of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000168_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\Lambda $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> to arbitrary finite-dimensional algebras. This category was recently constructed by Buan–Marsh in the <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000168_inline9.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\tau $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-tilting finite case and by Igusa–Todorov in the hereditary case.</jats:p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$\Lambda $是一个有限维代数。如果包含$\mathsf {mod}\Lambda $的最小扭转类是功能有限的,则称其为左有限子范畴。本文证明了由$\tau $ -倾斜约简产生的$\mathsf {mod}\Lambda $的宽子范畴正是左有限宽子范畴的Serre子范畴。因此,我们证明在进一步的$\tau $ -倾斜约简下,这些子类别的类是封闭的。这导致了将$\Lambda $的“$\tau $ -簇态射范畴”的定义扩展到任意有限维代数的自然方法。这个类别是最近由Buan-Marsh在$\tau $ -倾斜有限情况下和Igusa-Todorov在遗传情况下构建的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
-PERPENDICULAR WIDE SUBCATEGORIES
Let $\Lambda $ be a finite-dimensional algebra. A wide subcategory of $\mathsf {mod}\Lambda $ is called left finite if the smallest torsion class containing it is functorially finite. In this article, we prove that the wide subcategories of $\mathsf {mod}\Lambda $ arising from $\tau $ -tilting reduction are precisely the Serre subcategories of left-finite wide subcategories. As a consequence, we show that the class of such subcategories is closed under further $\tau $ -tilting reduction. This leads to a natural way to extend the definition of the “ $\tau $ -cluster morphism category” of $\Lambda $ to arbitrary finite-dimensional algebras. This category was recently constructed by Buan–Marsh in the $\tau $ -tilting finite case and by Igusa–Todorov in the hereditary case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信