{"title":"单调正态性与纳布拉积","authors":"H. Barriga-Acosta, P. Gartside","doi":"10.4064/FM926-10-2020","DOIUrl":null,"url":null,"abstract":"Roitman's combinatorial principle $\\Delta$ is equivalent to monotone normality of the nabla product, $\\nabla (\\omega +1)^\\omega$. If $\\{ X_n : n\\in \\omega\\}$ is a family of metrizable spaces and $\\nabla_n X_n$ is monotonically normal, then $\\nabla_n X_n$ is hereditarily paracompact. Hence, if $\\Delta$ holds then the box product $\\square (\\omega +1)^\\omega$ is paracompact. Large fragments of $\\Delta$ hold in $\\mathsf{ZFC}$, yielding large subspaces of $\\nabla (\\omega+1)^\\omega$ that are `really' monotonically normal. Countable nabla products of metrizable spaces which are respectively: arbitrary, of size $\\le \\mathfrak{c}$, or separable, are monotonically normal under respectively: $\\mathfrak{b}=\\mathfrak{d}$, $\\mathfrak{d}=\\mathfrak{c}$ or the Model Hypothesis. \nIt is consistent and independent that $\\nabla A(\\omega_1)^\\omega$ and $\\nabla (\\omega_1+1)^\\omega$ are hereditarily normal (or hereditarily paracompact, or monotonically normal). In $\\mathsf{ZFC}$ neither $\\nabla A(\\omega_2)^\\omega$ nor $\\nabla (\\omega_2+1)^\\omega$ is hereditarily normal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monotone normality and nabla products\",\"authors\":\"H. Barriga-Acosta, P. Gartside\",\"doi\":\"10.4064/FM926-10-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roitman's combinatorial principle $\\\\Delta$ is equivalent to monotone normality of the nabla product, $\\\\nabla (\\\\omega +1)^\\\\omega$. If $\\\\{ X_n : n\\\\in \\\\omega\\\\}$ is a family of metrizable spaces and $\\\\nabla_n X_n$ is monotonically normal, then $\\\\nabla_n X_n$ is hereditarily paracompact. Hence, if $\\\\Delta$ holds then the box product $\\\\square (\\\\omega +1)^\\\\omega$ is paracompact. Large fragments of $\\\\Delta$ hold in $\\\\mathsf{ZFC}$, yielding large subspaces of $\\\\nabla (\\\\omega+1)^\\\\omega$ that are `really' monotonically normal. Countable nabla products of metrizable spaces which are respectively: arbitrary, of size $\\\\le \\\\mathfrak{c}$, or separable, are monotonically normal under respectively: $\\\\mathfrak{b}=\\\\mathfrak{d}$, $\\\\mathfrak{d}=\\\\mathfrak{c}$ or the Model Hypothesis. \\nIt is consistent and independent that $\\\\nabla A(\\\\omega_1)^\\\\omega$ and $\\\\nabla (\\\\omega_1+1)^\\\\omega$ are hereditarily normal (or hereditarily paracompact, or monotonically normal). In $\\\\mathsf{ZFC}$ neither $\\\\nabla A(\\\\omega_2)^\\\\omega$ nor $\\\\nabla (\\\\omega_2+1)^\\\\omega$ is hereditarily normal.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/FM926-10-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/FM926-10-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Roitman's combinatorial principle $\Delta$ is equivalent to monotone normality of the nabla product, $\nabla (\omega +1)^\omega$. If $\{ X_n : n\in \omega\}$ is a family of metrizable spaces and $\nabla_n X_n$ is monotonically normal, then $\nabla_n X_n$ is hereditarily paracompact. Hence, if $\Delta$ holds then the box product $\square (\omega +1)^\omega$ is paracompact. Large fragments of $\Delta$ hold in $\mathsf{ZFC}$, yielding large subspaces of $\nabla (\omega+1)^\omega$ that are `really' monotonically normal. Countable nabla products of metrizable spaces which are respectively: arbitrary, of size $\le \mathfrak{c}$, or separable, are monotonically normal under respectively: $\mathfrak{b}=\mathfrak{d}$, $\mathfrak{d}=\mathfrak{c}$ or the Model Hypothesis.
It is consistent and independent that $\nabla A(\omega_1)^\omega$ and $\nabla (\omega_1+1)^\omega$ are hereditarily normal (or hereditarily paracompact, or monotonically normal). In $\mathsf{ZFC}$ neither $\nabla A(\omega_2)^\omega$ nor $\nabla (\omega_2+1)^\omega$ is hereditarily normal.