从第一性原理映射细菌叶绿素二聚体的电荷转移激发

IF 2.9 Q3 CHEMISTRY, PHYSICAL
Z. Hashemi, Matthias Knodt, Mário R. G. Marques, L. Leppert
{"title":"从第一性原理映射细菌叶绿素二聚体的电荷转移激发","authors":"Z. Hashemi, Matthias Knodt, Mário R. G. Marques, L. Leppert","doi":"10.1088/2516-1075/acd28e","DOIUrl":null,"url":null,"abstract":"Photoinduced charge-transfer excitations are key to understand the primary processes of natural photosynthesis and for designing photovoltaic and photocatalytic devices. In this paper, we use Bacteriochlorophyll dimers extracted from the light harvesting apparatus and reaction center of a photosynthetic purple bacterium as model systems to study such excitations using first-principles numerical simulation methods. We distinguish four different regimes of intermolecular coupling, ranging from very weakly coupled to strongly coupled, and identify the factors that determine the energy and character of charge-transfer excitations in each case. We also construct an artificial dimer to systematically study the effects of intermolecular distance and orientation on charge-transfer excitations, as well as the impact of molecular vibrations on these excitations. Our results provide design rules for tailoring charge-transfer excitations in Bacteriochloropylls and related photoactive molecules, and highlight the importance of including charge-transfer excitations in accurate models of the excited-state structure and dynamics of Bacteriochlorophyll aggregates.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping charge-transfer excitations in Bacteriochlorophyll dimers from first principles\",\"authors\":\"Z. Hashemi, Matthias Knodt, Mário R. G. Marques, L. Leppert\",\"doi\":\"10.1088/2516-1075/acd28e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoinduced charge-transfer excitations are key to understand the primary processes of natural photosynthesis and for designing photovoltaic and photocatalytic devices. In this paper, we use Bacteriochlorophyll dimers extracted from the light harvesting apparatus and reaction center of a photosynthetic purple bacterium as model systems to study such excitations using first-principles numerical simulation methods. We distinguish four different regimes of intermolecular coupling, ranging from very weakly coupled to strongly coupled, and identify the factors that determine the energy and character of charge-transfer excitations in each case. We also construct an artificial dimer to systematically study the effects of intermolecular distance and orientation on charge-transfer excitations, as well as the impact of molecular vibrations on these excitations. Our results provide design rules for tailoring charge-transfer excitations in Bacteriochloropylls and related photoactive molecules, and highlight the importance of including charge-transfer excitations in accurate models of the excited-state structure and dynamics of Bacteriochlorophyll aggregates.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/acd28e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/acd28e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光诱导电荷转移激发是理解自然光合作用的主要过程以及设计光伏和光催化器件的关键。在本文中,我们使用从光合紫色细菌的光采集装置和反应中心提取的细菌叶绿素二聚体作为模型系统,使用第一性原理数值模拟方法来研究这种激发。我们区分了四种不同的分子间耦合机制,从极弱耦合到强耦合,并确定了在每种情况下决定电荷转移激发的能量和特性的因素。我们还构建了一个人工二聚体,系统地研究了分子间距离和取向对电荷转移激发的影响,以及分子振动对这些激发的影响。我们的结果为定制细菌叶绿素和相关光活性分子中的电荷转移激发提供了设计规则,并强调了在细菌叶绿素聚集体的激发态结构和动力学的精确模型中包括电荷转移激发的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping charge-transfer excitations in Bacteriochlorophyll dimers from first principles
Photoinduced charge-transfer excitations are key to understand the primary processes of natural photosynthesis and for designing photovoltaic and photocatalytic devices. In this paper, we use Bacteriochlorophyll dimers extracted from the light harvesting apparatus and reaction center of a photosynthetic purple bacterium as model systems to study such excitations using first-principles numerical simulation methods. We distinguish four different regimes of intermolecular coupling, ranging from very weakly coupled to strongly coupled, and identify the factors that determine the energy and character of charge-transfer excitations in each case. We also construct an artificial dimer to systematically study the effects of intermolecular distance and orientation on charge-transfer excitations, as well as the impact of molecular vibrations on these excitations. Our results provide design rules for tailoring charge-transfer excitations in Bacteriochloropylls and related photoactive molecules, and highlight the importance of including charge-transfer excitations in accurate models of the excited-state structure and dynamics of Bacteriochlorophyll aggregates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信