求助PDF
{"title":"多面多元素组合太阳能聚光器研究进展","authors":"Xinglong Ma, Hongfei Zheng, Shuli Liu","doi":"10.15627/jd.2019.9","DOIUrl":null,"url":null,"abstract":"Solar concentrator always plays an important role in solar energy collection as it could enhance the energy density effectively. Various structures of solar concentrators have been researched in recent years, among which multi-surface (MS) and multi-element (ME) combinations are the two typical structures. MS concentrator is an improved structure for single surface concentrator. It is usually designed to increase the acceptance angle, enhance the light intercepting efficiency, homogenize the energy distribution, etc. ME concentrator is generally consist of two or more optical elements, in which MS concentrators are usually used as assistant optical components. ME concentrator always has larger tolerance on tracking error so that it is much easier to track the sun. It could be applied in high power concentration. The combination on optical elements of MS and ME solar concentrators was diagramed and theirs advantages and disadvantages were evaluated. Nowadays, solar applications are becoming more and more diverse and concomitantly, the researching methods are also improving. The computer-aided methods including numerical computation and optical simulation are the dominant method in nowadays, which makes it easier to analyze various structures of solar concentrators and their complex applications. Besides, solar applications are not limited in CT and CPV, but in many other fields such as solar daylighting, solar-pumped laser, solar cooling, solar desalination etc. It has been believed that more and more innovative designs on solar concentrator will be proposed in the future. © 2019 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"6 1","pages":"80-96"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Review on Solar Concentrators with Multi-surface and Multi-element Combinations\",\"authors\":\"Xinglong Ma, Hongfei Zheng, Shuli Liu\",\"doi\":\"10.15627/jd.2019.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar concentrator always plays an important role in solar energy collection as it could enhance the energy density effectively. Various structures of solar concentrators have been researched in recent years, among which multi-surface (MS) and multi-element (ME) combinations are the two typical structures. MS concentrator is an improved structure for single surface concentrator. It is usually designed to increase the acceptance angle, enhance the light intercepting efficiency, homogenize the energy distribution, etc. ME concentrator is generally consist of two or more optical elements, in which MS concentrators are usually used as assistant optical components. ME concentrator always has larger tolerance on tracking error so that it is much easier to track the sun. It could be applied in high power concentration. The combination on optical elements of MS and ME solar concentrators was diagramed and theirs advantages and disadvantages were evaluated. Nowadays, solar applications are becoming more and more diverse and concomitantly, the researching methods are also improving. The computer-aided methods including numerical computation and optical simulation are the dominant method in nowadays, which makes it easier to analyze various structures of solar concentrators and their complex applications. Besides, solar applications are not limited in CT and CPV, but in many other fields such as solar daylighting, solar-pumped laser, solar cooling, solar desalination etc. It has been believed that more and more innovative designs on solar concentrator will be proposed in the future. © 2019 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).\",\"PeriodicalId\":37388,\"journal\":{\"name\":\"Journal of Daylighting\",\"volume\":\"6 1\",\"pages\":\"80-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Daylighting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15627/jd.2019.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/jd.2019.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 10
引用
批量引用
A Review on Solar Concentrators with Multi-surface and Multi-element Combinations
Solar concentrator always plays an important role in solar energy collection as it could enhance the energy density effectively. Various structures of solar concentrators have been researched in recent years, among which multi-surface (MS) and multi-element (ME) combinations are the two typical structures. MS concentrator is an improved structure for single surface concentrator. It is usually designed to increase the acceptance angle, enhance the light intercepting efficiency, homogenize the energy distribution, etc. ME concentrator is generally consist of two or more optical elements, in which MS concentrators are usually used as assistant optical components. ME concentrator always has larger tolerance on tracking error so that it is much easier to track the sun. It could be applied in high power concentration. The combination on optical elements of MS and ME solar concentrators was diagramed and theirs advantages and disadvantages were evaluated. Nowadays, solar applications are becoming more and more diverse and concomitantly, the researching methods are also improving. The computer-aided methods including numerical computation and optical simulation are the dominant method in nowadays, which makes it easier to analyze various structures of solar concentrators and their complex applications. Besides, solar applications are not limited in CT and CPV, but in many other fields such as solar daylighting, solar-pumped laser, solar cooling, solar desalination etc. It has been believed that more and more innovative designs on solar concentrator will be proposed in the future. © 2019 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).