黏弹性TTI介质中2.5 D频域地震全波形反演位移张量的数值fr导数

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Qingjie Yang, Bing Zhou, Marcus Engsig, M. Won, M. Riahi, M. Al-khaleel, S. Greenhalgh
{"title":"黏弹性TTI介质中2.5 D频域地震全波形反演位移张量的数值fr<s:1>导数","authors":"Qingjie Yang, Bing Zhou, Marcus Engsig, M. Won, M. Riahi, M. Al-khaleel, S. Greenhalgh","doi":"10.1002/nsg.12265","DOIUrl":null,"url":null,"abstract":"Derivatives of the displacement tensor with respect to the independent model parameters of the subsurface, also called Fréchet derivatives (or sensitivity kernels), are a key ingredient for seismic full‐waveform inversion with a local‐search optimization algorithm. They provide a quantitative measure of the expected changes in the seismograms due to perturbations of the subsurface model parameters for a given survey geometry. Since 2.5‐D wavefield modeling involves a real point source in a 2‐D geological model with 3D (spherical) wave properties, it yields synthetic data much closer to the actual practical field data than the commonly used 2‐D wave simulation does, which uses an unrealistic line source in which the waves spread cylindrically. Based on our recently developed general 2.5‐D wavefield modeling scheme, we apply the perturbation method to obtain explicit analytic expressions for the derivatives of the displacement tensor for 2.5‐D/2‐D frequency‐domain seismic full‐waveform inversion in general viscoelastic anisotropic media. We then demonstrate the numerical calculations of all these derivatives in two common cases: (i) viscoelastic isotropic and (ii) viscoelastic tilted transversely isotropic (TTI) solids. Examples of the differing sensitivity patterns for the various derivatives are investigated and compared for four different homogeneous models involving 2‐D and 2.5‐D modeling. Also, the numerical results are verified against the analytic solutions for homogeneous models. We further validate the numerical derivatives in a 2‐D heterogeneous viscoelastic TTI case by conducting a synthetic data experiment of frequency‐domain full‐waveform inversion to individually recover the twelve independent model parameters (density, dip angle, five elastic moduli, and five corresponding Q‐factors) in a simple model comprising an anomalous square box target embedded in a uniform background. Another 2.5‐D multi‐target model experiment presenting impacts from four common seismic surveying geometries validates the Fréchet derivatives again.This article is protected by copyright. All rights reserved","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Fréchet derivatives of the displacement tensor for 2.5‐D frequency‐domain seismic full‐waveform inversion in viscoelastic TTI media\",\"authors\":\"Qingjie Yang, Bing Zhou, Marcus Engsig, M. Won, M. Riahi, M. Al-khaleel, S. Greenhalgh\",\"doi\":\"10.1002/nsg.12265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Derivatives of the displacement tensor with respect to the independent model parameters of the subsurface, also called Fréchet derivatives (or sensitivity kernels), are a key ingredient for seismic full‐waveform inversion with a local‐search optimization algorithm. They provide a quantitative measure of the expected changes in the seismograms due to perturbations of the subsurface model parameters for a given survey geometry. Since 2.5‐D wavefield modeling involves a real point source in a 2‐D geological model with 3D (spherical) wave properties, it yields synthetic data much closer to the actual practical field data than the commonly used 2‐D wave simulation does, which uses an unrealistic line source in which the waves spread cylindrically. Based on our recently developed general 2.5‐D wavefield modeling scheme, we apply the perturbation method to obtain explicit analytic expressions for the derivatives of the displacement tensor for 2.5‐D/2‐D frequency‐domain seismic full‐waveform inversion in general viscoelastic anisotropic media. We then demonstrate the numerical calculations of all these derivatives in two common cases: (i) viscoelastic isotropic and (ii) viscoelastic tilted transversely isotropic (TTI) solids. Examples of the differing sensitivity patterns for the various derivatives are investigated and compared for four different homogeneous models involving 2‐D and 2.5‐D modeling. Also, the numerical results are verified against the analytic solutions for homogeneous models. We further validate the numerical derivatives in a 2‐D heterogeneous viscoelastic TTI case by conducting a synthetic data experiment of frequency‐domain full‐waveform inversion to individually recover the twelve independent model parameters (density, dip angle, five elastic moduli, and five corresponding Q‐factors) in a simple model comprising an anomalous square box target embedded in a uniform background. Another 2.5‐D multi‐target model experiment presenting impacts from four common seismic surveying geometries validates the Fréchet derivatives again.This article is protected by copyright. All rights reserved\",\"PeriodicalId\":49771,\"journal\":{\"name\":\"Near Surface Geophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Near Surface Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/nsg.12265\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Near Surface Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/nsg.12265","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

位移张量相对于地下独立模型参数的导数,也称为fracimchet导数(或灵敏度核),是用局部搜索优化算法进行地震全波形反演的关键因素。它们提供了一种定量的测量方法,用于测量由于给定测量几何形状的地下模型参数的扰动而引起的地震记录的预期变化。由于2.5维波场建模涉及具有3D(球形)波特性的2维地质模型中的真实点源,因此与常用的2维波模拟相比,它产生的合成数据更接近实际的现场数据,后者使用的是不现实的线源,波在线状传播。基于我们最近开发的一般2.5 - D波场建模方案,我们应用摄动方法获得了一般粘弹性各向异性介质中2.5 - D/2 - D频域地震全波形反演位移张量导数的显式解析表达式。然后,我们在两种常见情况下演示了所有这些导数的数值计算:(i)粘弹性各向同性和(ii)粘弹性倾斜横向各向同性(TTI)固体。研究并比较了涉及2 - D和2.5 - D建模的四种不同的均匀模型的不同灵敏度模式的例子。同时,数值结果与齐次模型的解析解进行了验证。我们进一步验证了二维非均匀粘弹性TTI情况下的数值导数,通过进行频率域全波形反演的合成数据实验,分别恢复了一个简单模型中的12个独立模型参数(密度、倾角、5个弹性模量和5个相应的Q因子),该模型包含一个嵌入在均匀背景中的异常方框目标。另一个2.5 - D多目标模型实验显示了四种常见地震测量几何形状的影响,再次验证了fr衍生物。这篇文章受版权保护。版权所有
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Fréchet derivatives of the displacement tensor for 2.5‐D frequency‐domain seismic full‐waveform inversion in viscoelastic TTI media
Derivatives of the displacement tensor with respect to the independent model parameters of the subsurface, also called Fréchet derivatives (or sensitivity kernels), are a key ingredient for seismic full‐waveform inversion with a local‐search optimization algorithm. They provide a quantitative measure of the expected changes in the seismograms due to perturbations of the subsurface model parameters for a given survey geometry. Since 2.5‐D wavefield modeling involves a real point source in a 2‐D geological model with 3D (spherical) wave properties, it yields synthetic data much closer to the actual practical field data than the commonly used 2‐D wave simulation does, which uses an unrealistic line source in which the waves spread cylindrically. Based on our recently developed general 2.5‐D wavefield modeling scheme, we apply the perturbation method to obtain explicit analytic expressions for the derivatives of the displacement tensor for 2.5‐D/2‐D frequency‐domain seismic full‐waveform inversion in general viscoelastic anisotropic media. We then demonstrate the numerical calculations of all these derivatives in two common cases: (i) viscoelastic isotropic and (ii) viscoelastic tilted transversely isotropic (TTI) solids. Examples of the differing sensitivity patterns for the various derivatives are investigated and compared for four different homogeneous models involving 2‐D and 2.5‐D modeling. Also, the numerical results are verified against the analytic solutions for homogeneous models. We further validate the numerical derivatives in a 2‐D heterogeneous viscoelastic TTI case by conducting a synthetic data experiment of frequency‐domain full‐waveform inversion to individually recover the twelve independent model parameters (density, dip angle, five elastic moduli, and five corresponding Q‐factors) in a simple model comprising an anomalous square box target embedded in a uniform background. Another 2.5‐D multi‐target model experiment presenting impacts from four common seismic surveying geometries validates the Fréchet derivatives again.This article is protected by copyright. All rights reserved
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Near Surface Geophysics
Near Surface Geophysics 地学-地球化学与地球物理
CiteScore
3.60
自引率
12.50%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Near Surface Geophysics is an international journal for the publication of research and development in geophysics applied to near surface. It places emphasis on geological, hydrogeological, geotechnical, environmental, engineering, mining, archaeological, agricultural and other applications of geophysics as well as physical soil and rock properties. Geophysical and geoscientific case histories with innovative use of geophysical techniques are welcome, which may include improvements on instrumentation, measurements, data acquisition and processing, modelling, inversion, interpretation, project management and multidisciplinary use. The papers should also be understandable to those who use geophysical data but are not necessarily geophysicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信