钢管混凝土柱和钢梁框架的结构性能:有限元方法

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
A. Ahmed, E. Güneyisi
{"title":"钢管混凝土柱和钢梁框架的结构性能:有限元方法","authors":"A. Ahmed, E. Güneyisi","doi":"10.1177/2633366X19894593","DOIUrl":null,"url":null,"abstract":"Composite columns such as concrete-filled steel tube (CFST) were adopted in many building constructions in recent years because of carrying high loading with the ability to resist buckling and small cross-sectional area. The high behavior of the CFST columns is due to the interaction between steel and concrete which called the composite action. This type of composite column without main and tie reinforcements embedded in concrete gives high axial compression strength to resist the external loadings with the economic sectional area. The work presented in this article includes simulation models that tested by other researchers and a parametric study on the performance of frames that connected steel beam by composed columns of circular CFST that subjected to lateral loading. A finite element (FE) approach is adopted to simulate the models by ANSYS software. All models consider the linear and nonlinear material analysis of the concrete and steel. The validity of the developed model was examined by comparing with the experimental data founded in the literature. Different parameters such as the ratio of the axial load, the slenderness ratio of CFST column, the linear stiffness ratio of the beam–column, the steel yield strength of the beam, the steel yield strength of the tube, and concrete strength on the performance of the composite frames were also studied and the load-deformation performance was obtained over the different cases of the study. Analysis results by FE modeling were in good agreement with the experimental results.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2633366X19894593","citationCount":"4","resultStr":"{\"title\":\"Structural performance of frames with concrete-filled steel tubular columns and steel beams: Finite element approach\",\"authors\":\"A. Ahmed, E. Güneyisi\",\"doi\":\"10.1177/2633366X19894593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite columns such as concrete-filled steel tube (CFST) were adopted in many building constructions in recent years because of carrying high loading with the ability to resist buckling and small cross-sectional area. The high behavior of the CFST columns is due to the interaction between steel and concrete which called the composite action. This type of composite column without main and tie reinforcements embedded in concrete gives high axial compression strength to resist the external loadings with the economic sectional area. The work presented in this article includes simulation models that tested by other researchers and a parametric study on the performance of frames that connected steel beam by composed columns of circular CFST that subjected to lateral loading. A finite element (FE) approach is adopted to simulate the models by ANSYS software. All models consider the linear and nonlinear material analysis of the concrete and steel. The validity of the developed model was examined by comparing with the experimental data founded in the literature. Different parameters such as the ratio of the axial load, the slenderness ratio of CFST column, the linear stiffness ratio of the beam–column, the steel yield strength of the beam, the steel yield strength of the tube, and concrete strength on the performance of the composite frames were also studied and the load-deformation performance was obtained over the different cases of the study. Analysis results by FE modeling were in good agreement with the experimental results.\",\"PeriodicalId\":55551,\"journal\":{\"name\":\"Advanced Composites Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2633366X19894593\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2633366X19894593\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X19894593","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 4

摘要

钢管混凝土(CFST)等组合柱由于承载力高、抗屈曲能力强、截面面积小,近年来在许多建筑结构中被采用。钢管混凝土柱的高性能是由于钢筋和混凝土之间的相互作用,即复合作用。这种没有主筋和连接筋嵌入混凝土的组合柱具有较高的轴压强度,以经济的截面积抵抗外部荷载。本文所做的工作包括其他研究人员测试的模拟模型,以及对受横向载荷的圆形钢管混凝土组合柱连接钢梁的框架性能的参数研究。采用有限元方法,利用ANSYS软件对模型进行仿真。所有模型都考虑了混凝土和钢材的线性和非线性材料分析。通过与文献中的实验数据进行比较,验证了所开发模型的有效性。研究了轴压比、钢管混凝土柱长细比、梁柱线刚度比、梁的钢屈服强度、管的钢屈服力和混凝土强度等不同参数对组合框架性能的影响,得到了不同情况下的荷载变形性能。有限元模型的分析结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural performance of frames with concrete-filled steel tubular columns and steel beams: Finite element approach
Composite columns such as concrete-filled steel tube (CFST) were adopted in many building constructions in recent years because of carrying high loading with the ability to resist buckling and small cross-sectional area. The high behavior of the CFST columns is due to the interaction between steel and concrete which called the composite action. This type of composite column without main and tie reinforcements embedded in concrete gives high axial compression strength to resist the external loadings with the economic sectional area. The work presented in this article includes simulation models that tested by other researchers and a parametric study on the performance of frames that connected steel beam by composed columns of circular CFST that subjected to lateral loading. A finite element (FE) approach is adopted to simulate the models by ANSYS software. All models consider the linear and nonlinear material analysis of the concrete and steel. The validity of the developed model was examined by comparing with the experimental data founded in the literature. Different parameters such as the ratio of the axial load, the slenderness ratio of CFST column, the linear stiffness ratio of the beam–column, the steel yield strength of the beam, the steel yield strength of the tube, and concrete strength on the performance of the composite frames were also studied and the load-deformation performance was obtained over the different cases of the study. Analysis results by FE modeling were in good agreement with the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Composites Letters
Advanced Composites Letters 工程技术-材料科学:复合
自引率
0.00%
发文量
0
审稿时长
4.2 months
期刊介绍: Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信