{"title":"弱变量共享性质","authors":"Tore Fjetland Øgaard","doi":"10.18778/0138-0680.2023.05","DOIUrl":null,"url":null,"abstract":"\n\n\nAn algebraic type of structure is shown forth which is such that if it is a characteristic matrix for a logic, then that logic satisfies Meyer's weak variable sharing property. As a corollary, it is shown that RM and all its odd-valued extensions \\(\\mathbf{RM}_{2n\\mathord{-}1}\\) satisfy the weak variable sharing property. It is also shown that a proof to the effect that the \"fuzzy\" version of the relevant logic R satisfies the property is incorrect.\n\n\n","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The weak variable sharing property\",\"authors\":\"Tore Fjetland Øgaard\",\"doi\":\"10.18778/0138-0680.2023.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nAn algebraic type of structure is shown forth which is such that if it is a characteristic matrix for a logic, then that logic satisfies Meyer's weak variable sharing property. As a corollary, it is shown that RM and all its odd-valued extensions \\\\(\\\\mathbf{RM}_{2n\\\\mathord{-}1}\\\\) satisfy the weak variable sharing property. It is also shown that a proof to the effect that the \\\"fuzzy\\\" version of the relevant logic R satisfies the property is incorrect.\\n\\n\\n\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.2023.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2023.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
An algebraic type of structure is shown forth which is such that if it is a characteristic matrix for a logic, then that logic satisfies Meyer's weak variable sharing property. As a corollary, it is shown that RM and all its odd-valued extensions \(\mathbf{RM}_{2n\mathord{-}1}\) satisfy the weak variable sharing property. It is also shown that a proof to the effect that the "fuzzy" version of the relevant logic R satisfies the property is incorrect.