有限模格的拟恒等式。2

IF 0.7 Q2 MATHEMATICS
A. Basheyeva, S. Lutsak
{"title":"有限模格的拟恒等式。2","authors":"A. Basheyeva, S. Lutsak","doi":"10.31489/2023m2/45-52","DOIUrl":null,"url":null,"abstract":"The existence of a finite identity basis for any finite lattice was established by R. McKenzie in 1970, but the analogous statement for quasi-identities is incorrect. So, there is a finite lattice that does not have a finite quasi-identity basis and, V.A. Gorbunov and D.M. Smirnov asked which finite lattices have finite quasiidentity bases. In 1984 V.I. Tumanov conjectured that a proper quasivariety generated by a finite modular lattice is not finitely based. He also found two conditions for quasivarieties which provide this conjecture. We construct a finite modular lattice that does not satisfy Tumanov’s conditions but quasivariety generated by this lattice is not finitely based.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On quasi-identities of finite modular lattices. II\",\"authors\":\"A. Basheyeva, S. Lutsak\",\"doi\":\"10.31489/2023m2/45-52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of a finite identity basis for any finite lattice was established by R. McKenzie in 1970, but the analogous statement for quasi-identities is incorrect. So, there is a finite lattice that does not have a finite quasi-identity basis and, V.A. Gorbunov and D.M. Smirnov asked which finite lattices have finite quasiidentity bases. In 1984 V.I. Tumanov conjectured that a proper quasivariety generated by a finite modular lattice is not finitely based. He also found two conditions for quasivarieties which provide this conjecture. We construct a finite modular lattice that does not satisfy Tumanov’s conditions but quasivariety generated by this lattice is not finitely based.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023m2/45-52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m2/45-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

R. McKenzie于1970年建立了任意有限格的有限恒等基的存在性,但拟恒等基的类似陈述是不正确的。所以,存在一个有限格它没有有限的拟恒等基,V.A. Gorbunov和D.M. Smirnov问哪些有限格有有限的拟恒等基。1984年,V.I. Tumanov推测由有限模格生成的适当拟变簇不是有限基的。他还发现了两个准变项的条件来支持这个猜想。构造了一个不满足图马诺夫条件的有限模格,但其生成的准变分不是有限基的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On quasi-identities of finite modular lattices. II
The existence of a finite identity basis for any finite lattice was established by R. McKenzie in 1970, but the analogous statement for quasi-identities is incorrect. So, there is a finite lattice that does not have a finite quasi-identity basis and, V.A. Gorbunov and D.M. Smirnov asked which finite lattices have finite quasiidentity bases. In 1984 V.I. Tumanov conjectured that a proper quasivariety generated by a finite modular lattice is not finitely based. He also found two conditions for quasivarieties which provide this conjecture. We construct a finite modular lattice that does not satisfy Tumanov’s conditions but quasivariety generated by this lattice is not finitely based.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信