二值粒子群优化与人工神经网络隐层相结合的人脸识别

Q3 Engineering
S. Charan
{"title":"二值粒子群优化与人工神经网络隐层相结合的人脸识别","authors":"S. Charan","doi":"10.1504/IJAIP.2019.10010166","DOIUrl":null,"url":null,"abstract":"Face recognition is one of the challenging domains. We have seen artificial neural network perform very well in both detection and recognition. In this paper, we propose a novel method of feature extraction where features obtained at the end of hidden layer of neural network is utilised. This hidden layer output is our first level of features. On these features, we apply binary particle swarm optimisation (BPSO) to remove the redundancy, the few hidden units in the network. BPSO over hidden layer outputs can be implemented in two ways: 1) to apply BPSO over hidden layer in the training stage so the network is better optimised; 2) to directly use the BPSO on an optimised neural network's hidden layer output. Both the techniques performed well over traditional neural network and conventional BPSO. Experiments on FERET and LFW datasets show promising results.","PeriodicalId":38797,"journal":{"name":"International Journal of Advanced Intelligence Paradigms","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face Recognition using combined Binary particle swarm optimization and Hidden layer of Artificial Neural Network\",\"authors\":\"S. Charan\",\"doi\":\"10.1504/IJAIP.2019.10010166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition is one of the challenging domains. We have seen artificial neural network perform very well in both detection and recognition. In this paper, we propose a novel method of feature extraction where features obtained at the end of hidden layer of neural network is utilised. This hidden layer output is our first level of features. On these features, we apply binary particle swarm optimisation (BPSO) to remove the redundancy, the few hidden units in the network. BPSO over hidden layer outputs can be implemented in two ways: 1) to apply BPSO over hidden layer in the training stage so the network is better optimised; 2) to directly use the BPSO on an optimised neural network's hidden layer output. Both the techniques performed well over traditional neural network and conventional BPSO. Experiments on FERET and LFW datasets show promising results.\",\"PeriodicalId\":38797,\"journal\":{\"name\":\"International Journal of Advanced Intelligence Paradigms\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Intelligence Paradigms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAIP.2019.10010166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Intelligence Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAIP.2019.10010166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

人脸识别是一个具有挑战性的领域。我们已经看到人工神经网络在检测和识别方面都有很好的表现。本文提出了一种新的特征提取方法,利用神经网络隐层末端得到的特征进行特征提取。这个隐藏层的输出是我们的第一级特征。在这些特征上,我们应用二进制粒子群优化(BPSO)来去除冗余,即网络中少数隐藏单元。隐层输出上的BPSO可以通过两种方式实现:1)在训练阶段应用隐层上的BPSO,使网络得到更好的优化;2)对优化后的神经网络隐层输出直接使用BPSO。两种方法均优于传统神经网络和传统BPSO。在FERET和LFW数据集上的实验结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Recognition using combined Binary particle swarm optimization and Hidden layer of Artificial Neural Network
Face recognition is one of the challenging domains. We have seen artificial neural network perform very well in both detection and recognition. In this paper, we propose a novel method of feature extraction where features obtained at the end of hidden layer of neural network is utilised. This hidden layer output is our first level of features. On these features, we apply binary particle swarm optimisation (BPSO) to remove the redundancy, the few hidden units in the network. BPSO over hidden layer outputs can be implemented in two ways: 1) to apply BPSO over hidden layer in the training stage so the network is better optimised; 2) to directly use the BPSO on an optimised neural network's hidden layer output. Both the techniques performed well over traditional neural network and conventional BPSO. Experiments on FERET and LFW datasets show promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信