用合成核研究非吸收介质两区Milne问题中的前向和后向散射

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED
Dalia A. Garbiea, A. El-Depsy, M. M. Selim, O. A. Mohamedien
{"title":"用合成核研究非吸收介质两区Milne问题中的前向和后向散射","authors":"Dalia A. Garbiea, A. El-Depsy, M. M. Selim, O. A. Mohamedien","doi":"10.1080/23324309.2023.2219659","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the effect of an extremely anisotropic scattering function on the two-region Milne problem is studied. This scattering function divides the neutrons resulting from the collisions into three parts; part ( which moves backward, part (m) which moves forward, and part (n) which emerge isotropically from the collisions, where  + m + n = 1. The integral version of the transport equation is solved using trial functions based on Case’s eigenmodes and exponential integral function. Hence, the solution to the Milne problem is formulated in terms of characteristic quantities such as the extrapolation length and the fractional scalar flux discontinuity. Numerical results for the analytically evaluated quantities are presented. Some of our numerical results are compared with the available published results.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"52 1","pages":"162 - 177"},"PeriodicalIF":0.7000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Forward and Backward Scattering in Two-Region Milne Problem for Non-absorbing Medium Using a Synthetic Kernel\",\"authors\":\"Dalia A. Garbiea, A. El-Depsy, M. M. Selim, O. A. Mohamedien\",\"doi\":\"10.1080/23324309.2023.2219659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, the effect of an extremely anisotropic scattering function on the two-region Milne problem is studied. This scattering function divides the neutrons resulting from the collisions into three parts; part ( which moves backward, part (m) which moves forward, and part (n) which emerge isotropically from the collisions, where  + m + n = 1. The integral version of the transport equation is solved using trial functions based on Case’s eigenmodes and exponential integral function. Hence, the solution to the Milne problem is formulated in terms of characteristic quantities such as the extrapolation length and the fractional scalar flux discontinuity. Numerical results for the analytically evaluated quantities are presented. Some of our numerical results are compared with the available published results.\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"52 1\",\"pages\":\"162 - 177\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2023.2219659\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2023.2219659","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了极各向异性散射函数对两区Milne问题的影响。这个散射函数把碰撞产生的中子分成三部分;部分(向后移动),部分(m)向前移动,部分(n)从碰撞中各向同性出现,其中+ m + n = 1。利用基于Case特征模态和指数积分函数的试函数求解输运方程的积分版本。因此,米尔恩问题的解是用外推长度和分数标量通量不连续等特征量来表示的。给出了解析求值量的数值结果。我们的一些数值结果与现有的已发表的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Forward and Backward Scattering in Two-Region Milne Problem for Non-absorbing Medium Using a Synthetic Kernel
Abstract In this work, the effect of an extremely anisotropic scattering function on the two-region Milne problem is studied. This scattering function divides the neutrons resulting from the collisions into three parts; part ( which moves backward, part (m) which moves forward, and part (n) which emerge isotropically from the collisions, where  + m + n = 1. The integral version of the transport equation is solved using trial functions based on Case’s eigenmodes and exponential integral function. Hence, the solution to the Milne problem is formulated in terms of characteristic quantities such as the extrapolation length and the fractional scalar flux discontinuity. Numerical results for the analytically evaluated quantities are presented. Some of our numerical results are compared with the available published results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信