{"title":"关于方折射单理想的极值BETTI数","authors":"Luca Amata, M. Crupi","doi":"10.24330/ieja.969656","DOIUrl":null,"url":null,"abstract":"Let $K$ be a field and $S = K[x_1,\\dots,x_n]$ be a polynomial ring over $K$. We discuss the behaviour of the extremal Betti numbers of the class of squarefree strongly stable ideals. More precisely, we give a numerical characterization of the possible extremal Betti numbers (values as well as positions) of such a class of squarefree monomial ideals.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ON THE EXTREMAL BETTI NUMBERS OF SQUAREFREE MONOMIAL IDEALS\",\"authors\":\"Luca Amata, M. Crupi\",\"doi\":\"10.24330/ieja.969656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a field and $S = K[x_1,\\\\dots,x_n]$ be a polynomial ring over $K$. We discuss the behaviour of the extremal Betti numbers of the class of squarefree strongly stable ideals. More precisely, we give a numerical characterization of the possible extremal Betti numbers (values as well as positions) of such a class of squarefree monomial ideals.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.969656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.969656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
ON THE EXTREMAL BETTI NUMBERS OF SQUAREFREE MONOMIAL IDEALS
Let $K$ be a field and $S = K[x_1,\dots,x_n]$ be a polynomial ring over $K$. We discuss the behaviour of the extremal Betti numbers of the class of squarefree strongly stable ideals. More precisely, we give a numerical characterization of the possible extremal Betti numbers (values as well as positions) of such a class of squarefree monomial ideals.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.