Harder和Narasimhan多边形的顶点与大数定律

IF 0.5 4区 数学 Q3 MATHEMATICS
Nathan Grieve
{"title":"Harder和Narasimhan多边形的顶点与大数定律","authors":"Nathan Grieve","doi":"10.4153/S000843952200039X","DOIUrl":null,"url":null,"abstract":"Abstract We build on the recent techniques of Codogni and Patakfalvi (2021, Inventiones Mathematicae 223, 811–894), which were used to establish theorems about semi-positivity of the Chow Mumford line bundles for families of \n$\\mathrm {K}$\n -semistable Fano varieties. Here, we apply the Central Limit Theorem to ascertain the asymptotic probabilistic nature of the vertices of the Harder and Narasimhan polygons. As an application of our main result, we use it to establish a filtered vector space analogue of the main technical result of Codogni and Patakfalvi (2021, Inventiones Mathematicae 223, 811–894). In doing so, we expand upon the slope stability theory, for filtered vector spaces, that was initiated by Faltings and Wüstholz (1994, Inventiones Mathematicae 116, 109–138). One source of inspiration for our abstract study of Harder and Narasimhan data, which is a concept that we define here, is the lattice reduction methods of Grayson (1984, Commentarii Mathematici Helvetic 59, 600–634). Another is the work of Faltings and Wüstholz (1994, Inventiones Mathematicae 116, 109–138), and Evertse and Ferretti (2013, Annals of Mathematics 177, 513–590), which is within the context of Diophantine approximation for projective varieties.","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":"66 1","pages":"340 - 357"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vertices of the Harder and Narasimhan polygons and the laws of large numbers\",\"authors\":\"Nathan Grieve\",\"doi\":\"10.4153/S000843952200039X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We build on the recent techniques of Codogni and Patakfalvi (2021, Inventiones Mathematicae 223, 811–894), which were used to establish theorems about semi-positivity of the Chow Mumford line bundles for families of \\n$\\\\mathrm {K}$\\n -semistable Fano varieties. Here, we apply the Central Limit Theorem to ascertain the asymptotic probabilistic nature of the vertices of the Harder and Narasimhan polygons. As an application of our main result, we use it to establish a filtered vector space analogue of the main technical result of Codogni and Patakfalvi (2021, Inventiones Mathematicae 223, 811–894). In doing so, we expand upon the slope stability theory, for filtered vector spaces, that was initiated by Faltings and Wüstholz (1994, Inventiones Mathematicae 116, 109–138). One source of inspiration for our abstract study of Harder and Narasimhan data, which is a concept that we define here, is the lattice reduction methods of Grayson (1984, Commentarii Mathematici Helvetic 59, 600–634). Another is the work of Faltings and Wüstholz (1994, Inventiones Mathematicae 116, 109–138), and Evertse and Ferretti (2013, Annals of Mathematics 177, 513–590), which is within the context of Diophantine approximation for projective varieties.\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\"66 1\",\"pages\":\"340 - 357\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S000843952200039X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S000843952200039X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们建立在Codogni和Patakfalvi(2021,Inventiones Mathematicae 223811–894)的最新技术的基础上,这些技术用于建立$\mathrm{K}$-半稳定Fano变种族的Chow-Mumford线束的半正性定理。在这里,我们应用中心极限定理来确定Harder和Narasimhan多边形顶点的渐近概率性质。作为我们主要结果的应用,我们使用它来建立Codogni和Patakfalvi(2021,Inventiones Mathematicae 223811–894)的主要技术结果的滤波向量空间模拟。在这样做的过程中,我们扩展了Faltings和Wüstholz(1994,Inventiones Mathematicae 116109–138)提出的滤波向量空间的边坡稳定性理论。Grayson(1984,Commentarii Mathematici Helvetic 59600-634)的晶格归约方法是我们对Harder和Narasimhan数据进行抽象研究的灵感来源,这是我们在这里定义的一个概念。另一个是Faltings和Wüstholz(1994,Inventiones Mathematicae 116109-138)以及Evertse和Ferretti(2013,Annals of Mathematics 177513-590)的工作,这是在投影变体的丢番图近似的背景下进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertices of the Harder and Narasimhan polygons and the laws of large numbers
Abstract We build on the recent techniques of Codogni and Patakfalvi (2021, Inventiones Mathematicae 223, 811–894), which were used to establish theorems about semi-positivity of the Chow Mumford line bundles for families of $\mathrm {K}$ -semistable Fano varieties. Here, we apply the Central Limit Theorem to ascertain the asymptotic probabilistic nature of the vertices of the Harder and Narasimhan polygons. As an application of our main result, we use it to establish a filtered vector space analogue of the main technical result of Codogni and Patakfalvi (2021, Inventiones Mathematicae 223, 811–894). In doing so, we expand upon the slope stability theory, for filtered vector spaces, that was initiated by Faltings and Wüstholz (1994, Inventiones Mathematicae 116, 109–138). One source of inspiration for our abstract study of Harder and Narasimhan data, which is a concept that we define here, is the lattice reduction methods of Grayson (1984, Commentarii Mathematici Helvetic 59, 600–634). Another is the work of Faltings and Wüstholz (1994, Inventiones Mathematicae 116, 109–138), and Evertse and Ferretti (2013, Annals of Mathematics 177, 513–590), which is within the context of Diophantine approximation for projective varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
68
审稿时长
24 months
期刊介绍: The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year. To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics. Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année. Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信