Araiz Nazir, M. R. Shaheen, C. M. Ayyub, R. Hussain, Nadeem Sarwer, M. Imran, Muhammad Aurangzaib, M. Nawaz, Muhammad Faizan Ali Khan, Yussra Yawad, M. Iqbal
{"title":"探索利用原生材料进行高温番茄栽培的优良遗传选择","authors":"Araiz Nazir, M. R. Shaheen, C. M. Ayyub, R. Hussain, Nadeem Sarwer, M. Imran, Muhammad Aurangzaib, M. Nawaz, Muhammad Faizan Ali Khan, Yussra Yawad, M. Iqbal","doi":"10.5073/JABFQ.2017.090.042","DOIUrl":null,"url":null,"abstract":"Screening test was conducted on 54genotypes of tomato to analyze the effect of heat stress and categorize them as heat tolerant or heat susceptible ones. Seedlings were grown at temperatures of 28/22oC day/night. Four weeks after sowing, plants were exposed to high temperatures of 40/32oC day/night for one week. Data for various morphological (root and shoot length, root and shoot fresh and dry weight, number of leaves) and physiological parameters (chlorophyll contents, sub-stomatal CO2, transpiration rate, stomatal conductance, photosynthetic rate, water use efficiency and leaf temperature) were recorded. Heat stress had a negative effect on all physiological and morphological processes of the genotypes. However, “Parter Improved”, “Legend” and “Roma” were the most tolerant genotypes whereas “Grus Chovka”, “Nepoli”, “Tima France”, “Kaldera” and “Cold Set” were susceptible to heat stress.","PeriodicalId":56276,"journal":{"name":"Journal of Applied Botany and Food Quality-Angewandte Botanik","volume":"90 1","pages":"339-345"},"PeriodicalIF":1.2000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring the better genetic options from indigenous material to cultivate tomato under high temperature regime\",\"authors\":\"Araiz Nazir, M. R. Shaheen, C. M. Ayyub, R. Hussain, Nadeem Sarwer, M. Imran, Muhammad Aurangzaib, M. Nawaz, Muhammad Faizan Ali Khan, Yussra Yawad, M. Iqbal\",\"doi\":\"10.5073/JABFQ.2017.090.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Screening test was conducted on 54genotypes of tomato to analyze the effect of heat stress and categorize them as heat tolerant or heat susceptible ones. Seedlings were grown at temperatures of 28/22oC day/night. Four weeks after sowing, plants were exposed to high temperatures of 40/32oC day/night for one week. Data for various morphological (root and shoot length, root and shoot fresh and dry weight, number of leaves) and physiological parameters (chlorophyll contents, sub-stomatal CO2, transpiration rate, stomatal conductance, photosynthetic rate, water use efficiency and leaf temperature) were recorded. Heat stress had a negative effect on all physiological and morphological processes of the genotypes. However, “Parter Improved”, “Legend” and “Roma” were the most tolerant genotypes whereas “Grus Chovka”, “Nepoli”, “Tima France”, “Kaldera” and “Cold Set” were susceptible to heat stress.\",\"PeriodicalId\":56276,\"journal\":{\"name\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"volume\":\"90 1\",\"pages\":\"339-345\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5073/JABFQ.2017.090.042\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Botany and Food Quality-Angewandte Botanik","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5073/JABFQ.2017.090.042","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Exploring the better genetic options from indigenous material to cultivate tomato under high temperature regime
Screening test was conducted on 54genotypes of tomato to analyze the effect of heat stress and categorize them as heat tolerant or heat susceptible ones. Seedlings were grown at temperatures of 28/22oC day/night. Four weeks after sowing, plants were exposed to high temperatures of 40/32oC day/night for one week. Data for various morphological (root and shoot length, root and shoot fresh and dry weight, number of leaves) and physiological parameters (chlorophyll contents, sub-stomatal CO2, transpiration rate, stomatal conductance, photosynthetic rate, water use efficiency and leaf temperature) were recorded. Heat stress had a negative effect on all physiological and morphological processes of the genotypes. However, “Parter Improved”, “Legend” and “Roma” were the most tolerant genotypes whereas “Grus Chovka”, “Nepoli”, “Tima France”, “Kaldera” and “Cold Set” were susceptible to heat stress.
期刊介绍:
The Journal of Applied Botany and Food Quality is the Open Access journal of the German Society for Quality Research on Plant Foods and the Section Applied Botany of the German Botanical Society. It provides a platform for scientists to disseminate recent results of applied plant research in plant physiology and plant ecology, plant biotechnology, plant breeding and cultivation, phytomedicine, plant nutrition, plant stress and resistance, plant microbiology, plant analysis (including -omics techniques), and plant food chemistry. The articles have a clear focus on botanical and plant quality aspects and contain new and innovative information based on state-of-the-art methodologies.