无扭$S$进频移及其频谱

IF 0.7 3区 数学 Q2 MATHEMATICS
'Alvaro Bustos-Gajardo, Neil Mañibo, R. Yassawi
{"title":"无扭$S$进频移及其频谱","authors":"'Alvaro Bustos-Gajardo, Neil Mañibo, R. Yassawi","doi":"10.4064/sm221028-6-5","DOIUrl":null,"url":null,"abstract":"In this work we study $S$-adic shifts generated by sequences of morphisms that are constant-length. We call a sequence of constant-length morphisms torsion-free if any prime divisor of one of the lengths is a divisor of infinitely many of the lengths. We show that torsion-free directive sequences generate shifts that enjoy the property of quasi-recognizability which can be used as a substitute for recognizability. Indeed quasi-recognizable directive sequences can be replaced by a recognizable directive sequence. With this, we give a finer description of the spectrum of shifts generated by torsion-free sequences defined on a sequence of alphabets of bounded size, in terms of extensions of the notions of height and column number. We illustrate our results throughout with examples that explain the subtleties that can arise.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Torsion-free $S$-adic shifts and their spectrum\",\"authors\":\"'Alvaro Bustos-Gajardo, Neil Mañibo, R. Yassawi\",\"doi\":\"10.4064/sm221028-6-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we study $S$-adic shifts generated by sequences of morphisms that are constant-length. We call a sequence of constant-length morphisms torsion-free if any prime divisor of one of the lengths is a divisor of infinitely many of the lengths. We show that torsion-free directive sequences generate shifts that enjoy the property of quasi-recognizability which can be used as a substitute for recognizability. Indeed quasi-recognizable directive sequences can be replaced by a recognizable directive sequence. With this, we give a finer description of the spectrum of shifts generated by torsion-free sequences defined on a sequence of alphabets of bounded size, in terms of extensions of the notions of height and column number. We illustrate our results throughout with examples that explain the subtleties that can arise.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm221028-6-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm221028-6-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们研究了由常长态射序列产生的$S$进位移。如果其中一个长度的素数因子是无限多个长度的素数因子,我们称一个常长态射序列为无扭序列。我们证明了无扭转指示序列产生的位移具有准可识别性,可以用来代替可识别性。事实上,准可识别的指令序列可以被可识别的指令序列所取代。在此基础上,我们根据高度和列数概念的扩展,给出了在有界大小的字母序列上定义的无扭序列所产生的移位谱的更精细的描述。我们用例子来说明我们的结果,解释可能出现的微妙之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torsion-free $S$-adic shifts and their spectrum
In this work we study $S$-adic shifts generated by sequences of morphisms that are constant-length. We call a sequence of constant-length morphisms torsion-free if any prime divisor of one of the lengths is a divisor of infinitely many of the lengths. We show that torsion-free directive sequences generate shifts that enjoy the property of quasi-recognizability which can be used as a substitute for recognizability. Indeed quasi-recognizable directive sequences can be replaced by a recognizable directive sequence. With this, we give a finer description of the spectrum of shifts generated by torsion-free sequences defined on a sequence of alphabets of bounded size, in terms of extensions of the notions of height and column number. We illustrate our results throughout with examples that explain the subtleties that can arise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信