{"title":"锥度量空间中新的耦合不动点定理及其在积分方程和Markov过程中的应用","authors":"D. Ramesh Kumar, M. Pitchaimani","doi":"10.1016/j.trmi.2018.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we define a generalized <span><math><mi>T</mi></math></span>-contraction and derive some new coupled fixed point theorems in cone metric spaces with total ordering condition. An illustrative example is provided to support our results. As an application, we utilize the results obtained to study the existence of common solution to a system of integral equations. We also present an application to Markov process.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 409-419"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.01.006","citationCount":"7","resultStr":"{\"title\":\"New coupled fixed point theorems in cone metric spaces with applications to integral equations and Markov process\",\"authors\":\"D. Ramesh Kumar, M. Pitchaimani\",\"doi\":\"10.1016/j.trmi.2018.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we define a generalized <span><math><mi>T</mi></math></span>-contraction and derive some new coupled fixed point theorems in cone metric spaces with total ordering condition. An illustrative example is provided to support our results. As an application, we utilize the results obtained to study the existence of common solution to a system of integral equations. We also present an application to Markov process.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"172 3\",\"pages\":\"Pages 409-419\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2018.01.006\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809217300363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217300363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
New coupled fixed point theorems in cone metric spaces with applications to integral equations and Markov process
In this paper, we define a generalized -contraction and derive some new coupled fixed point theorems in cone metric spaces with total ordering condition. An illustrative example is provided to support our results. As an application, we utilize the results obtained to study the existence of common solution to a system of integral equations. We also present an application to Markov process.