Daewook Kim, Xiaolong Ke, W. Pullen, Tianyi Wang, Hee-June Choi, V. Negi, Lei Huang, M. Idir
{"title":"广义大光学制造多路复用","authors":"Daewook Kim, Xiaolong Ke, W. Pullen, Tianyi Wang, Hee-June Choi, V. Negi, Lei Huang, M. Idir","doi":"10.1051/jeos/2022002","DOIUrl":null,"url":null,"abstract":"High precision astronomical optics are manufactured through deterministic computer controlled optical surfacing processes, such as subaperture small tool polishing, magnetorheological finishing, bonnet tool polishing, and ion beam figuring. Due to the small tool size and the corresponding tool influence function, large optics fabrication is a highly time-consuming process. The framework of multiplexed figuring runs for the simultaneous use of two or more tools is presented. This multiplexing process increases the manufacturing efficiency and reduces the overall cost using parallelized subaperture tools.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalized Large Optics Fabrication Multiplexing\",\"authors\":\"Daewook Kim, Xiaolong Ke, W. Pullen, Tianyi Wang, Hee-June Choi, V. Negi, Lei Huang, M. Idir\",\"doi\":\"10.1051/jeos/2022002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High precision astronomical optics are manufactured through deterministic computer controlled optical surfacing processes, such as subaperture small tool polishing, magnetorheological finishing, bonnet tool polishing, and ion beam figuring. Due to the small tool size and the corresponding tool influence function, large optics fabrication is a highly time-consuming process. The framework of multiplexed figuring runs for the simultaneous use of two or more tools is presented. This multiplexing process increases the manufacturing efficiency and reduces the overall cost using parallelized subaperture tools.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2022002\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2022002","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
High precision astronomical optics are manufactured through deterministic computer controlled optical surfacing processes, such as subaperture small tool polishing, magnetorheological finishing, bonnet tool polishing, and ion beam figuring. Due to the small tool size and the corresponding tool influence function, large optics fabrication is a highly time-consuming process. The framework of multiplexed figuring runs for the simultaneous use of two or more tools is presented. This multiplexing process increases the manufacturing efficiency and reduces the overall cost using parallelized subaperture tools.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.