纯跳跃噪声扰动下随机临界Oldroyd-B型模型的弱鞅解

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
U. Manna, D. Mukherjee
{"title":"纯跳跃噪声扰动下随机临界Oldroyd-B型模型的弱鞅解","authors":"U. Manna, D. Mukherjee","doi":"10.1080/07362994.2021.1947855","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the existence of a weak martingale solution for a two-dimensional critical viscoelastic flow of the Oldroyd type driven by pure jump Lévy noise. Due to the viscoelastic nature, noise in the equation modeling stress tensor is considered in the Marcus canonical form. Owing to the lack of dissipation and taking into account of the structure of the non-linear terms, the proof requires higher order estimates.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"40 1","pages":"657 - 690"},"PeriodicalIF":0.8000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak martingale solution of stochastic critical Oldroyd-B type models perturbed by pure jump noise\",\"authors\":\"U. Manna, D. Mukherjee\",\"doi\":\"10.1080/07362994.2021.1947855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the existence of a weak martingale solution for a two-dimensional critical viscoelastic flow of the Oldroyd type driven by pure jump Lévy noise. Due to the viscoelastic nature, noise in the equation modeling stress tensor is considered in the Marcus canonical form. Owing to the lack of dissipation and taking into account of the structure of the non-linear terms, the proof requires higher order estimates.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\"40 1\",\"pages\":\"657 - 690\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2021.1947855\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2021.1947855","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了纯跳变lsamvy噪声驱动的二维临界粘弹性流的弱鞅解的存在性。由于粘弹性的特性,应力张量模型中的噪声以马库斯标准形式考虑。由于缺乏耗散和考虑到非线性项的结构,证明需要高阶估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak martingale solution of stochastic critical Oldroyd-B type models perturbed by pure jump noise
Abstract We investigate the existence of a weak martingale solution for a two-dimensional critical viscoelastic flow of the Oldroyd type driven by pure jump Lévy noise. Due to the viscoelastic nature, noise in the equation modeling stress tensor is considered in the Marcus canonical form. Owing to the lack of dissipation and taking into account of the structure of the non-linear terms, the proof requires higher order estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信