CTAB比对稻壳灰热解制备中孔二氧化硅性能的影响

IF 1.3 Q3 ENGINEERING, CHEMICAL
N. Wulandari, L. Efiyanti, W. Trisunaryanti, H. Oktaviano, Syaiful Bahri, Y. Ni'mah, S. Larasati
{"title":"CTAB比对稻壳灰热解制备中孔二氧化硅性能的影响","authors":"N. Wulandari, L. Efiyanti, W. Trisunaryanti, H. Oktaviano, Syaiful Bahri, Y. Ni'mah, S. Larasati","doi":"10.9767/BCREC.16.3.10828.632-640","DOIUrl":null,"url":null,"abstract":"Due to its wide application, synthesizing silica through a cost-effective process becomes an attractive subject to be studied today. In this work, mesoporous silica (MS) was prepared from the highly available agricultural waste, rice husk ash (RHA), to be used as catalyst in the pyrolysis of a-cellulose. Silica was extracted from RHA through a reflux process in a strong base solution and arranged into a mesoporous structure by using cetyltrimethylammonium bromide (CTAB). To find a condition that produces a mesoporous support with the highest surface area and catalytic activity, the mole ratios of CTAB:SiO2 used during the preparation of MS were varied; 0.05:1; 0.1:1; 0.2:1. Afterwards, all prepared MS were characterized using Fourier Transform Infra Red (FTIR), Scanning Electron Microscope (SEM), and Surface Area Analyzer (SAA). Through he surface area analysis, it was found that MS materials possessed surface area, pore diameter, and pore volume that range from 600–970 m2.g−1, 3.5–4.7 nm, 0.7–1 cm3.g−1, respectively. The highest surface area, with over 970.80 m2.g−1, was obtained in MS support prepared by using CTAB:SiO2 mole ratio of 0.1:1. SEM images showed a coral reef-like surface morphology for all MS. In the pyrolysis of a-cellulose evaluated by Py-GCMS, aside from producing biofuel compounds, the use of MS was able to generate two-fold furan production, which is considered as a valuable compound in many chemical syntheses. This result highlights the potential of MS prepared from RHA to be used as a catalysis support material that is more economical for biofuel and other chemical production. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of CTAB Ratio to the Characters of Mesoporous Silica Prepared from Rice Husk Ash in the Pyrolysis of a–cellulose\",\"authors\":\"N. Wulandari, L. Efiyanti, W. Trisunaryanti, H. Oktaviano, Syaiful Bahri, Y. Ni'mah, S. Larasati\",\"doi\":\"10.9767/BCREC.16.3.10828.632-640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its wide application, synthesizing silica through a cost-effective process becomes an attractive subject to be studied today. In this work, mesoporous silica (MS) was prepared from the highly available agricultural waste, rice husk ash (RHA), to be used as catalyst in the pyrolysis of a-cellulose. Silica was extracted from RHA through a reflux process in a strong base solution and arranged into a mesoporous structure by using cetyltrimethylammonium bromide (CTAB). To find a condition that produces a mesoporous support with the highest surface area and catalytic activity, the mole ratios of CTAB:SiO2 used during the preparation of MS were varied; 0.05:1; 0.1:1; 0.2:1. Afterwards, all prepared MS were characterized using Fourier Transform Infra Red (FTIR), Scanning Electron Microscope (SEM), and Surface Area Analyzer (SAA). Through he surface area analysis, it was found that MS materials possessed surface area, pore diameter, and pore volume that range from 600–970 m2.g−1, 3.5–4.7 nm, 0.7–1 cm3.g−1, respectively. The highest surface area, with over 970.80 m2.g−1, was obtained in MS support prepared by using CTAB:SiO2 mole ratio of 0.1:1. SEM images showed a coral reef-like surface morphology for all MS. In the pyrolysis of a-cellulose evaluated by Py-GCMS, aside from producing biofuel compounds, the use of MS was able to generate two-fold furan production, which is considered as a valuable compound in many chemical syntheses. This result highlights the potential of MS prepared from RHA to be used as a catalysis support material that is more economical for biofuel and other chemical production. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). \",\"PeriodicalId\":46276,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering and Catalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering and Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/BCREC.16.3.10828.632-640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/BCREC.16.3.10828.632-640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2

摘要

由于其广泛的应用,通过具有成本效益的工艺合成二氧化硅成为当今研究的一个有吸引力的课题。本工作以高效农业废弃物稻壳灰(RHA)为原料,制备了介孔二氧化硅(MS),用作α-纤维素热解的催化剂。在强碱溶液中通过回流过程从RHA中提取二氧化硅,并使用十六烷基三甲基溴化铵(CTAB)将其排列成中孔结构。为了找到产生具有最高表面积和催化活性的介孔载体的条件,在MS的制备过程中使用的CTAB:SiO2的摩尔比是变化的;0.05:1;0.1:1;0.2:1。然后,使用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和表面积分析仪(SAA)对所有制备的MS进行表征。通过表面积分析,发现MS材料的表面积、孔径和孔体积分别为600–970 m2.g−1、3.5–4.7 nm和0.7–1 cm3.g−1。使用0.1∶1的CTAB:SiO2摩尔比制备的MS载体获得了最高的表面积,超过970.80 m2.g−1。SEM图像显示了所有MS的珊瑚礁状表面形态。在Py-GCMS评估的a-纤维素的热解中,除了生产生物燃料化合物外,使用MS还能够产生两倍的呋喃产量,这在许多化学合成中被认为是一种有价值的化合物。这一结果突出了由RHA制备的MS用作催化载体材料的潜力,该材料对生物燃料和其他化学生产更经济。版权所有©2021作者所有,BCREC集团出版。这是CC BY-SA许可证下的开放访问文章(https://creativecommons.org/licenses/by-sa/4.0)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of CTAB Ratio to the Characters of Mesoporous Silica Prepared from Rice Husk Ash in the Pyrolysis of a–cellulose
Due to its wide application, synthesizing silica through a cost-effective process becomes an attractive subject to be studied today. In this work, mesoporous silica (MS) was prepared from the highly available agricultural waste, rice husk ash (RHA), to be used as catalyst in the pyrolysis of a-cellulose. Silica was extracted from RHA through a reflux process in a strong base solution and arranged into a mesoporous structure by using cetyltrimethylammonium bromide (CTAB). To find a condition that produces a mesoporous support with the highest surface area and catalytic activity, the mole ratios of CTAB:SiO2 used during the preparation of MS were varied; 0.05:1; 0.1:1; 0.2:1. Afterwards, all prepared MS were characterized using Fourier Transform Infra Red (FTIR), Scanning Electron Microscope (SEM), and Surface Area Analyzer (SAA). Through he surface area analysis, it was found that MS materials possessed surface area, pore diameter, and pore volume that range from 600–970 m2.g−1, 3.5–4.7 nm, 0.7–1 cm3.g−1, respectively. The highest surface area, with over 970.80 m2.g−1, was obtained in MS support prepared by using CTAB:SiO2 mole ratio of 0.1:1. SEM images showed a coral reef-like surface morphology for all MS. In the pyrolysis of a-cellulose evaluated by Py-GCMS, aside from producing biofuel compounds, the use of MS was able to generate two-fold furan production, which is considered as a valuable compound in many chemical syntheses. This result highlights the potential of MS prepared from RHA to be used as a catalysis support material that is more economical for biofuel and other chemical production. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
6.70%
发文量
52
审稿时长
12 weeks
期刊介绍: Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on general chemical engineering process are not covered and out of scope of this journal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信