多边形线条拼接的匹配复合体

IF 0.6 4区 数学 Q3 MATHEMATICS
Takahiro Matsushita
{"title":"多边形线条拼接的匹配复合体","authors":"Takahiro Matsushita","doi":"10.14492/hokmj/2019-213","DOIUrl":null,"url":null,"abstract":"The matching complex of a simple graph $G$ is a simplicial complex consisting of the matchings on $G$. Jelic Milutinovic et al. studied the matching complexes of the polygonal line tilings, and they gave a lower bound for the connectivity of the matching complexes of polygonal line tilings. In this paper, we determine the homotopy types of the matching complexes of polygonal line tilings recursively, and determine their connectivities.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Matching complexes of polygonal line tilings\",\"authors\":\"Takahiro Matsushita\",\"doi\":\"10.14492/hokmj/2019-213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The matching complex of a simple graph $G$ is a simplicial complex consisting of the matchings on $G$. Jelic Milutinovic et al. studied the matching complexes of the polygonal line tilings, and they gave a lower bound for the connectivity of the matching complexes of polygonal line tilings. In this paper, we determine the homotopy types of the matching complexes of polygonal line tilings recursively, and determine their connectivities.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/hokmj/2019-213\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/2019-213","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

简单图$G$的匹配复形是由$G$上的匹配组成的一个简单复形。Jelic-Milutinovic等人研究了多边形网格的匹配复合体,给出了多边形网格匹配复合体连通性的下界。在本文中,我们递归地确定了多角线tilings的匹配复形的同构类型,并确定了它们的连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matching complexes of polygonal line tilings
The matching complex of a simple graph $G$ is a simplicial complex consisting of the matchings on $G$. Jelic Milutinovic et al. studied the matching complexes of the polygonal line tilings, and they gave a lower bound for the connectivity of the matching complexes of polygonal line tilings. In this paper, we determine the homotopy types of the matching complexes of polygonal line tilings recursively, and determine their connectivities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信