lászló kovács和hyo-seob - sim定理的概率版本

IF 0.7 Q2 MATHEMATICS
A. Lucchini, Mariapia Moscatiello
{"title":"lászló kovács和hyo-seob - sim定理的概率版本","authors":"A. Lucchini, Mariapia Moscatiello","doi":"10.22108/IJGT.2018.112531.1496","DOIUrl":null,"url":null,"abstract":"For a finite group group‎, ‎denote by $mathcal V(G)$ the smallest positive integer $k$ with the property that the probability of generating $G$ by $k$ randomly chosen elements is at least $1/e.$ Let $G$ be a finite soluble group‎. ‎{Assume} that for every $pin pi(G)$ there exists $G_pleq G$ such that $p$ does not divide $|G:G_p|$ and ${mathcal V}(G_p)leq d.$ Then ${mathcal V}(G)leq d+7.$‎","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A probabilistic version of a theorem of lászló kovács and hyo-seob sim\",\"authors\":\"A. Lucchini, Mariapia Moscatiello\",\"doi\":\"10.22108/IJGT.2018.112531.1496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a finite group group‎, ‎denote by $mathcal V(G)$ the smallest positive integer $k$ with the property that the probability of generating $G$ by $k$ randomly chosen elements is at least $1/e.$ Let $G$ be a finite soluble group‎. ‎{Assume} that for every $pin pi(G)$ there exists $G_pleq G$ such that $p$ does not divide $|G:G_p|$ and ${mathcal V}(G_p)leq d.$ Then ${mathcal V}(G)leq d+7.$‎\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2018.112531.1496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2018.112531.1496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于有限群,用数学V(G)表示最小的正整数k,其性质是由k个随机选择的元素产生G的概率至少为1/e。设$G$是一个有限可溶群。{假设}对于每一个$pin pi(G)$,存在$G_pleq G$,使得$p$不能除$|G:G_p|$和${mathcal V}(G_p)leq d。$则${mathcal V}(G)leq d+7.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A probabilistic version of a theorem of lászló kovács and hyo-seob sim
For a finite group group‎, ‎denote by $mathcal V(G)$ the smallest positive integer $k$ with the property that the probability of generating $G$ by $k$ randomly chosen elements is at least $1/e.$ Let $G$ be a finite soluble group‎. ‎{Assume} that for every $pin pi(G)$ there exists $G_pleq G$ such that $p$ does not divide $|G:G_p|$ and ${mathcal V}(G_p)leq d.$ Then ${mathcal V}(G)leq d+7.$‎
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信