{"title":"lászló kovács和hyo-seob - sim定理的概率版本","authors":"A. Lucchini, Mariapia Moscatiello","doi":"10.22108/IJGT.2018.112531.1496","DOIUrl":null,"url":null,"abstract":"For a finite group group, denote by $mathcal V(G)$ the smallest positive integer $k$ with the property that the probability of generating $G$ by $k$ randomly chosen elements is at least $1/e.$ Let $G$ be a finite soluble group. {Assume} that for every $pin pi(G)$ there exists $G_pleq G$ such that $p$ does not divide $|G:G_p|$ and ${mathcal V}(G_p)leq d.$ Then ${mathcal V}(G)leq d+7.$","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A probabilistic version of a theorem of lászló kovács and hyo-seob sim\",\"authors\":\"A. Lucchini, Mariapia Moscatiello\",\"doi\":\"10.22108/IJGT.2018.112531.1496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a finite group group, denote by $mathcal V(G)$ the smallest positive integer $k$ with the property that the probability of generating $G$ by $k$ randomly chosen elements is at least $1/e.$ Let $G$ be a finite soluble group. {Assume} that for every $pin pi(G)$ there exists $G_pleq G$ such that $p$ does not divide $|G:G_p|$ and ${mathcal V}(G_p)leq d.$ Then ${mathcal V}(G)leq d+7.$\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2018.112531.1496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2018.112531.1496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A probabilistic version of a theorem of lászló kovács and hyo-seob sim
For a finite group group, denote by $mathcal V(G)$ the smallest positive integer $k$ with the property that the probability of generating $G$ by $k$ randomly chosen elements is at least $1/e.$ Let $G$ be a finite soluble group. {Assume} that for every $pin pi(G)$ there exists $G_pleq G$ such that $p$ does not divide $|G:G_p|$ and ${mathcal V}(G_p)leq d.$ Then ${mathcal V}(G)leq d+7.$
期刊介绍:
International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.