{"title":"具有薄膨胀的拟共形映射","authors":"C. Bishop","doi":"10.5565/publmat6622207","DOIUrl":null,"url":null,"abstract":". We give an estimate that quantifies the fact that a normalized quasi-conformal map whose dilatation is non-zero only on a set of small area approximates the identity uniformly on the whole plane. The precise statement is motivated by applications of the author’s quasiconformal folding method for constructing entire functions; in particular a construction of transcendental wandering domains given by Fagella, Godillon and Jarque [7].","PeriodicalId":54531,"journal":{"name":"Publicacions Matematiques","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasiconformal maps with thin dilatations\",\"authors\":\"C. Bishop\",\"doi\":\"10.5565/publmat6622207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We give an estimate that quantifies the fact that a normalized quasi-conformal map whose dilatation is non-zero only on a set of small area approximates the identity uniformly on the whole plane. The precise statement is motivated by applications of the author’s quasiconformal folding method for constructing entire functions; in particular a construction of transcendental wandering domains given by Fagella, Godillon and Jarque [7].\",\"PeriodicalId\":54531,\"journal\":{\"name\":\"Publicacions Matematiques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publicacions Matematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6622207\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicacions Matematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6622207","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
. We give an estimate that quantifies the fact that a normalized quasi-conformal map whose dilatation is non-zero only on a set of small area approximates the identity uniformly on the whole plane. The precise statement is motivated by applications of the author’s quasiconformal folding method for constructing entire functions; in particular a construction of transcendental wandering domains given by Fagella, Godillon and Jarque [7].
期刊介绍:
Publicacions Matemàtiques is a research mathematical journal published by the Department of Mathematics of the Universitat Autònoma de Barcelona since 1976 (before 1988 named Publicacions de la Secció de Matemàtiques, ISSN: 0210-2978 print, 2014-4369 online). Two issues, constituting a single volume, are published each year. The journal has a large circulation being received by more than two hundred libraries all over the world. It is indexed by Mathematical Reviews, Zentralblatt Math., Science Citation Index, SciSearch®, ISI Alerting Services, COMPUMATH Citation Index®, and it participates in the Euclid Project and JSTOR. Free access is provided to all published papers through the web page.
Publicacions Matemàtiques is a non-profit university journal which gives special attention to the authors during the whole editorial process. In 2019, the average time between the reception of a paper and its publication was twenty-two months, and the average time between the acceptance of a paper and its publication was fifteen months. The journal keeps on receiving a large number of submissions, so the authors should be warned that currently only articles with excellent reports can be accepted.