{"title":"具有薄膨胀的拟共形映射","authors":"C. Bishop","doi":"10.5565/publmat6622207","DOIUrl":null,"url":null,"abstract":". We give an estimate that quantifies the fact that a normalized quasi-conformal map whose dilatation is non-zero only on a set of small area approximates the identity uniformly on the whole plane. The precise statement is motivated by applications of the author’s quasiconformal folding method for constructing entire functions; in particular a construction of transcendental wandering domains given by Fagella, Godillon and Jarque [7].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasiconformal maps with thin dilatations\",\"authors\":\"C. Bishop\",\"doi\":\"10.5565/publmat6622207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We give an estimate that quantifies the fact that a normalized quasi-conformal map whose dilatation is non-zero only on a set of small area approximates the identity uniformly on the whole plane. The precise statement is motivated by applications of the author’s quasiconformal folding method for constructing entire functions; in particular a construction of transcendental wandering domains given by Fagella, Godillon and Jarque [7].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6622207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6622207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
. We give an estimate that quantifies the fact that a normalized quasi-conformal map whose dilatation is non-zero only on a set of small area approximates the identity uniformly on the whole plane. The precise statement is motivated by applications of the author’s quasiconformal folding method for constructing entire functions; in particular a construction of transcendental wandering domains given by Fagella, Godillon and Jarque [7].