超对数凹分布的浓度不等式

IF 0.7 3区 数学 Q2 MATHEMATICS
Heshan Aravinda, Arnaud Marsiglietti, J. Melbourne
{"title":"超对数凹分布的浓度不等式","authors":"Heshan Aravinda, Arnaud Marsiglietti, J. Melbourne","doi":"10.4064/sm210605-2-10","DOIUrl":null,"url":null,"abstract":". We establish concentration inequalities in the class of ultra log-concave distributions. In particular, we show that ultra log-concave distributions satisfy Poisson concentration bounds. As an application, we derive concentration bounds for the intrinsic volumes of a convex body, which generalizes and improves a result of Lotz, McCoy, Nourdin, Peccati, and Tropp (2019).","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Concentration inequalities for ultra log-concave distributions\",\"authors\":\"Heshan Aravinda, Arnaud Marsiglietti, J. Melbourne\",\"doi\":\"10.4064/sm210605-2-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We establish concentration inequalities in the class of ultra log-concave distributions. In particular, we show that ultra log-concave distributions satisfy Poisson concentration bounds. As an application, we derive concentration bounds for the intrinsic volumes of a convex body, which generalizes and improves a result of Lotz, McCoy, Nourdin, Peccati, and Tropp (2019).\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm210605-2-10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm210605-2-10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

.我们建立了一类超对数凹分布中的集中不等式。特别地,我们证明了超对数凹分布满足泊松浓度界。作为一个应用,我们推导了凸体本征体积的集中界,推广和改进了Lotz、McCoy、Nourdin、Peccati和Tropp(2019)的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concentration inequalities for ultra log-concave distributions
. We establish concentration inequalities in the class of ultra log-concave distributions. In particular, we show that ultra log-concave distributions satisfy Poisson concentration bounds. As an application, we derive concentration bounds for the intrinsic volumes of a convex body, which generalizes and improves a result of Lotz, McCoy, Nourdin, Peccati, and Tropp (2019).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信