Heshan Aravinda, Arnaud Marsiglietti, J. Melbourne
{"title":"超对数凹分布的浓度不等式","authors":"Heshan Aravinda, Arnaud Marsiglietti, J. Melbourne","doi":"10.4064/sm210605-2-10","DOIUrl":null,"url":null,"abstract":". We establish concentration inequalities in the class of ultra log-concave distributions. In particular, we show that ultra log-concave distributions satisfy Poisson concentration bounds. As an application, we derive concentration bounds for the intrinsic volumes of a convex body, which generalizes and improves a result of Lotz, McCoy, Nourdin, Peccati, and Tropp (2019).","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Concentration inequalities for ultra log-concave distributions\",\"authors\":\"Heshan Aravinda, Arnaud Marsiglietti, J. Melbourne\",\"doi\":\"10.4064/sm210605-2-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We establish concentration inequalities in the class of ultra log-concave distributions. In particular, we show that ultra log-concave distributions satisfy Poisson concentration bounds. As an application, we derive concentration bounds for the intrinsic volumes of a convex body, which generalizes and improves a result of Lotz, McCoy, Nourdin, Peccati, and Tropp (2019).\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm210605-2-10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm210605-2-10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Concentration inequalities for ultra log-concave distributions
. We establish concentration inequalities in the class of ultra log-concave distributions. In particular, we show that ultra log-concave distributions satisfy Poisson concentration bounds. As an application, we derive concentration bounds for the intrinsic volumes of a convex body, which generalizes and improves a result of Lotz, McCoy, Nourdin, Peccati, and Tropp (2019).
期刊介绍:
The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.