Pavle V. M. Blagojevi'c, Jaime Calles Loperena, M. Crabb, Aleksandra S. Dimitrijevi'c Blagojevi'c
{"title":"质量分配的gr<s:1> nbaum- hadwiger - ramos问题的拓扑结构","authors":"Pavle V. M. Blagojevi'c, Jaime Calles Loperena, M. Crabb, Aleksandra S. Dimitrijevi'c Blagojevi'c","doi":"10.12775/tmna.2022.041","DOIUrl":null,"url":null,"abstract":"In this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the \nclassical Grünbaum-Hadwiger-Ramos mass partition problem to mass assignments.\nUsing the Fadell-Husseini index theory we prove that for a given family of $j$ mass assignments\n$\\mu_1,\\dots,\\mu_j$ on the Grassmann manifold $G_{\\ell}\\big(\\mathbb{R}^d\\big)$\n and a given\ninteger $k\\geq 1$ there exist a linear subspace $L\\in G_{\\ell}\\big(\\mathbb{R}^d\\big)$ and\n$k$\naffine hyperplanes in $L$ that equipart the masses $\\mu_1^L,\\dots,\\mu_j^L$\nassigned to the subspace $L$, provided that $d\\geq j + (2^{k-1}-1)2^{\\lfloor\\log_2j\\rfloor}$.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topology of the Grünbaum-Hadwiger-Ramos problem for mass assignments\",\"authors\":\"Pavle V. M. Blagojevi'c, Jaime Calles Loperena, M. Crabb, Aleksandra S. Dimitrijevi'c Blagojevi'c\",\"doi\":\"10.12775/tmna.2022.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the \\nclassical Grünbaum-Hadwiger-Ramos mass partition problem to mass assignments.\\nUsing the Fadell-Husseini index theory we prove that for a given family of $j$ mass assignments\\n$\\\\mu_1,\\\\dots,\\\\mu_j$ on the Grassmann manifold $G_{\\\\ell}\\\\big(\\\\mathbb{R}^d\\\\big)$\\n and a given\\ninteger $k\\\\geq 1$ there exist a linear subspace $L\\\\in G_{\\\\ell}\\\\big(\\\\mathbb{R}^d\\\\big)$ and\\n$k$\\naffine hyperplanes in $L$ that equipart the masses $\\\\mu_1^L,\\\\dots,\\\\mu_j^L$\\nassigned to the subspace $L$, provided that $d\\\\geq j + (2^{k-1}-1)2^{\\\\lfloor\\\\log_2j\\\\rfloor}$.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.041\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Topology of the Grünbaum-Hadwiger-Ramos problem for mass assignments
In this paper, motivated by recent work of Schnider and Axelrod-Freed and Soberón, we study an extension of the
classical Grünbaum-Hadwiger-Ramos mass partition problem to mass assignments.
Using the Fadell-Husseini index theory we prove that for a given family of $j$ mass assignments
$\mu_1,\dots,\mu_j$ on the Grassmann manifold $G_{\ell}\big(\mathbb{R}^d\big)$
and a given
integer $k\geq 1$ there exist a linear subspace $L\in G_{\ell}\big(\mathbb{R}^d\big)$ and
$k$
affine hyperplanes in $L$ that equipart the masses $\mu_1^L,\dots,\mu_j^L$
assigned to the subspace $L$, provided that $d\geq j + (2^{k-1}-1)2^{\lfloor\log_2j\rfloor}$.
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.