{"title":"一维聚焦三次非线性薛定谔方程吉布斯测度的微观推导","authors":"Andrew Rout, Vedran Sohinger","doi":"10.1080/03605302.2023.2243491","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we give a microscopic derivation of Gibbs measures for the focusing cubic nonlinear Schrödinger equation on the one-dimensional torus from many-body quantum Gibbs states. Since we are not making any positivity assumptions on the interaction, it is necessary to introduce a truncation of the mass in the classical setting and of the rescaled particle number in the quantum setting. Our methods are based on a perturbative expansion of the interaction, similarly as in [1]. Due to the presence of the truncation, the obtained series have infinite radius of convergence. We treat the case of bounded, L 1 and delta function interaction potentials, without any sign assumptions. Within this framework, we also study time-dependent correlation functions. This is the first such known result in the focusing regime.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A microscopic derivation of Gibbs measures for the 1D focusing cubic nonlinear Schrödinger equation\",\"authors\":\"Andrew Rout, Vedran Sohinger\",\"doi\":\"10.1080/03605302.2023.2243491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we give a microscopic derivation of Gibbs measures for the focusing cubic nonlinear Schrödinger equation on the one-dimensional torus from many-body quantum Gibbs states. Since we are not making any positivity assumptions on the interaction, it is necessary to introduce a truncation of the mass in the classical setting and of the rescaled particle number in the quantum setting. Our methods are based on a perturbative expansion of the interaction, similarly as in [1]. Due to the presence of the truncation, the obtained series have infinite radius of convergence. We treat the case of bounded, L 1 and delta function interaction potentials, without any sign assumptions. Within this framework, we also study time-dependent correlation functions. This is the first such known result in the focusing regime.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2023.2243491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2243491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A microscopic derivation of Gibbs measures for the 1D focusing cubic nonlinear Schrödinger equation
Abstract In this paper, we give a microscopic derivation of Gibbs measures for the focusing cubic nonlinear Schrödinger equation on the one-dimensional torus from many-body quantum Gibbs states. Since we are not making any positivity assumptions on the interaction, it is necessary to introduce a truncation of the mass in the classical setting and of the rescaled particle number in the quantum setting. Our methods are based on a perturbative expansion of the interaction, similarly as in [1]. Due to the presence of the truncation, the obtained series have infinite radius of convergence. We treat the case of bounded, L 1 and delta function interaction potentials, without any sign assumptions. Within this framework, we also study time-dependent correlation functions. This is the first such known result in the focusing regime.