为投资组合构建分类和选择股票的综合框架:来自印度NSE的证据

Q1 Decision Sciences
Sayan Gupta, Gautam Bandyopadhyay, S. Biswas, A. Mitra
{"title":"为投资组合构建分类和选择股票的综合框架:来自印度NSE的证据","authors":"Sayan Gupta, Gautam Bandyopadhyay, S. Biswas, A. Mitra","doi":"10.31181/dmame0318062021g","DOIUrl":null,"url":null,"abstract":"Investment extortion in the stock market is a crucial aspect considered by the investors. Therefore, investors implemented different strategies. This study was intended at constructing an investment portfolio (IP) of stocks within the NSE 100 listed companies of Non-parametric nature, fulfilling the basic premise of portfolio making that is, reducing risks while yielding an attractive return higher than any other instrument for the investors. Using DP omnibus test, the desired sample of companies following the non-normal distribution was achieved. Using financial beta, we have selected the outcome based on the nature of their ‘return’ and ‘risk'. We introduce TOPSIS (Technique for order of performance by similarity to ideal solution), a multi-criteria decision-making process (MCDM) to study the profitability of stocks, rank wise for each year, and finally, the Bayes portfolio model help to select the overall profitability associate with low risk for the construction of the portfolio.","PeriodicalId":32695,"journal":{"name":"Decision Making Applications in Management and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An integrated framework for classification and selection of stocks for portfolio construction: Evidence from NSE, India\",\"authors\":\"Sayan Gupta, Gautam Bandyopadhyay, S. Biswas, A. Mitra\",\"doi\":\"10.31181/dmame0318062021g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investment extortion in the stock market is a crucial aspect considered by the investors. Therefore, investors implemented different strategies. This study was intended at constructing an investment portfolio (IP) of stocks within the NSE 100 listed companies of Non-parametric nature, fulfilling the basic premise of portfolio making that is, reducing risks while yielding an attractive return higher than any other instrument for the investors. Using DP omnibus test, the desired sample of companies following the non-normal distribution was achieved. Using financial beta, we have selected the outcome based on the nature of their ‘return’ and ‘risk'. We introduce TOPSIS (Technique for order of performance by similarity to ideal solution), a multi-criteria decision-making process (MCDM) to study the profitability of stocks, rank wise for each year, and finally, the Bayes portfolio model help to select the overall profitability associate with low risk for the construction of the portfolio.\",\"PeriodicalId\":32695,\"journal\":{\"name\":\"Decision Making Applications in Management and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Making Applications in Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31181/dmame0318062021g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Making Applications in Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31181/dmame0318062021g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 8

摘要

股票市场中的投资敲诈是投资者关注的一个重要问题。因此,投资者采取了不同的策略。本研究旨在构建NSE 100上市公司非参数性股票的投资组合(IP),实现投资组合的基本前提,即降低风险,同时为投资者提供高于任何其他工具的有吸引力的回报。采用DP综合检验,得到了符合非正态分布的期望样本。使用金融beta,我们根据它们的“回报”和“风险”的性质选择了结果。我们引入了多准则决策过程(MCDM) TOPSIS (technical for order of performance by similarity to ideal solution)来研究股票的盈利能力,对每年进行明智的排名,最后,贝叶斯投资组合模型帮助选择与低风险相关的整体盈利能力来构建投资组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integrated framework for classification and selection of stocks for portfolio construction: Evidence from NSE, India
Investment extortion in the stock market is a crucial aspect considered by the investors. Therefore, investors implemented different strategies. This study was intended at constructing an investment portfolio (IP) of stocks within the NSE 100 listed companies of Non-parametric nature, fulfilling the basic premise of portfolio making that is, reducing risks while yielding an attractive return higher than any other instrument for the investors. Using DP omnibus test, the desired sample of companies following the non-normal distribution was achieved. Using financial beta, we have selected the outcome based on the nature of their ‘return’ and ‘risk'. We introduce TOPSIS (Technique for order of performance by similarity to ideal solution), a multi-criteria decision-making process (MCDM) to study the profitability of stocks, rank wise for each year, and finally, the Bayes portfolio model help to select the overall profitability associate with low risk for the construction of the portfolio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Making Applications in Management and Engineering
Decision Making Applications in Management and Engineering Decision Sciences-General Decision Sciences
CiteScore
14.40
自引率
0.00%
发文量
35
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信