关于紧致分层空间的本征形式

Pub Date : 2022-11-24 DOI:10.1007/s10455-022-09883-9
Luobin Fang
{"title":"关于紧致分层空间的本征形式","authors":"Luobin Fang","doi":"10.1007/s10455-022-09883-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a compact Thom–Mather stratified pseudomanifold, and let <i>M</i> be the regular part of <i>X</i> endowed with an iterated metric. In this paper, we prove that if the curvature operator of <i>M</i> is bounded, then the <span>\\(L^2\\)</span> harmonic space of <i>M</i> is finite dimensional. Next we consider the absolute eigenvalue problems of the Hodge Laplacian of a sequence of compact domains <span>\\(\\Omega _j\\)</span> converging to <i>M</i>. We prove that when the curvature operator of <i>M</i> is bounded, the eigenvalues of <span>\\(\\Omega _j\\)</span> converge to eigenvalues of <i>M</i>, and the eigenforms of <span>\\(\\Omega _j\\)</span> converge to eigenforms of <i>M</i> in the Sobolev norm. This generalizes Chavel and Feldman’s theorem in Chavel and Feldman (J Funct Anal 30:198-222, 1978) from compact manifolds to compact pseudomanifolds and from functions to differential forms. Then, we apply our results to <span>\\(L^2\\)</span>-chomology. We will give a correspondence between boundary cohomology and <span>\\(L^2\\)</span>-cohomology.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the eigenforms of compact stratified spaces\",\"authors\":\"Luobin Fang\",\"doi\":\"10.1007/s10455-022-09883-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>X</i> be a compact Thom–Mather stratified pseudomanifold, and let <i>M</i> be the regular part of <i>X</i> endowed with an iterated metric. In this paper, we prove that if the curvature operator of <i>M</i> is bounded, then the <span>\\\\(L^2\\\\)</span> harmonic space of <i>M</i> is finite dimensional. Next we consider the absolute eigenvalue problems of the Hodge Laplacian of a sequence of compact domains <span>\\\\(\\\\Omega _j\\\\)</span> converging to <i>M</i>. We prove that when the curvature operator of <i>M</i> is bounded, the eigenvalues of <span>\\\\(\\\\Omega _j\\\\)</span> converge to eigenvalues of <i>M</i>, and the eigenforms of <span>\\\\(\\\\Omega _j\\\\)</span> converge to eigenforms of <i>M</i> in the Sobolev norm. This generalizes Chavel and Feldman’s theorem in Chavel and Feldman (J Funct Anal 30:198-222, 1978) from compact manifolds to compact pseudomanifolds and from functions to differential forms. Then, we apply our results to <span>\\\\(L^2\\\\)</span>-chomology. We will give a correspondence between boundary cohomology and <span>\\\\(L^2\\\\)</span>-cohomology.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-022-09883-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-022-09883-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设X是紧致Thom–Mather分层伪流形,设M是X的正则部分,赋予迭代度量。本文证明了如果M的曲率算子是有界的,则M的调和空间是有限维的。接下来,我们考虑了收敛到M的紧致域序列的Hodge-Laplacean的绝对特征值问题。我们证明了当M的曲率算子有界时,在Sobolev范数中,\(\Omega_j\)的特征值收敛于M的特征值,\(\ Omega_j \)的本征型收敛于M。这将Chavel和Feldman(J Funct Anal 30:198-221978)中的Chavel和Feldman定理从紧致流形推广到紧致伪流形,从函数推广到微分形式。然后,我们将我们的结果应用于\(L^2)-同调。我们将给出边界上同调与(L^2)-上同调之间的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the eigenforms of compact stratified spaces

Let X be a compact Thom–Mather stratified pseudomanifold, and let M be the regular part of X endowed with an iterated metric. In this paper, we prove that if the curvature operator of M is bounded, then the \(L^2\) harmonic space of M is finite dimensional. Next we consider the absolute eigenvalue problems of the Hodge Laplacian of a sequence of compact domains \(\Omega _j\) converging to M. We prove that when the curvature operator of M is bounded, the eigenvalues of \(\Omega _j\) converge to eigenvalues of M, and the eigenforms of \(\Omega _j\) converge to eigenforms of M in the Sobolev norm. This generalizes Chavel and Feldman’s theorem in Chavel and Feldman (J Funct Anal 30:198-222, 1978) from compact manifolds to compact pseudomanifolds and from functions to differential forms. Then, we apply our results to \(L^2\)-chomology. We will give a correspondence between boundary cohomology and \(L^2\)-cohomology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信