一种变分泛锐化算法,增强光谱和空间细节

IF 1.8 Q3 REMOTE SENSING
Rajesh Gogineni, A. Chaturvedi, Daya Sagar B S
{"title":"一种变分泛锐化算法,增强光谱和空间细节","authors":"Rajesh Gogineni, A. Chaturvedi, Daya Sagar B S","doi":"10.1080/19479832.2020.1838629","DOIUrl":null,"url":null,"abstract":"ABSTRACT Pan-sharpening is a remote sensing image fusion technique that generates a high-resolution multispectral (HRMS) image on combining a low resolution multispectral (MS) image and a panchromatic (PAN) image. In this paper, a new optimisation model is proposed for pan-sharpening. The proposed model consists of three terms: (i) a data synthesis fidelity term formulated on inferring the relationship between source MS image and fused image to preserve the spectral information, (ii) a total generalised variation-based prior term to inject the significant spatial details from PAN image to pan-sharpened image, and (iii) a spectral distortion reduction term that exploits the correlation between multispectral image bands. To solve the resultant convex optimisation problem, an efficient and convergence guaranteed operator splitting framework based on the alternating direction method of multipliers (ADMM) algorithm is formulated. Finally, the proposed model is experimentally validated using full-resolution and reduced-resolution data. The pan-sharpened outcomes exhibit the potential of the proposed method in enhancing the spatial and spectral quality.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":"12 1","pages":"242 - 264"},"PeriodicalIF":1.8000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19479832.2020.1838629","citationCount":"6","resultStr":"{\"title\":\"A variational pan-sharpening algorithm to enhance the spectral and spatial details\",\"authors\":\"Rajesh Gogineni, A. Chaturvedi, Daya Sagar B S\",\"doi\":\"10.1080/19479832.2020.1838629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Pan-sharpening is a remote sensing image fusion technique that generates a high-resolution multispectral (HRMS) image on combining a low resolution multispectral (MS) image and a panchromatic (PAN) image. In this paper, a new optimisation model is proposed for pan-sharpening. The proposed model consists of three terms: (i) a data synthesis fidelity term formulated on inferring the relationship between source MS image and fused image to preserve the spectral information, (ii) a total generalised variation-based prior term to inject the significant spatial details from PAN image to pan-sharpened image, and (iii) a spectral distortion reduction term that exploits the correlation between multispectral image bands. To solve the resultant convex optimisation problem, an efficient and convergence guaranteed operator splitting framework based on the alternating direction method of multipliers (ADMM) algorithm is formulated. Finally, the proposed model is experimentally validated using full-resolution and reduced-resolution data. The pan-sharpened outcomes exhibit the potential of the proposed method in enhancing the spatial and spectral quality.\",\"PeriodicalId\":46012,\"journal\":{\"name\":\"International Journal of Image and Data Fusion\",\"volume\":\"12 1\",\"pages\":\"242 - 264\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19479832.2020.1838629\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Data Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19479832.2020.1838629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2020.1838629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 6

摘要

泛锐化是一种将低分辨率多光谱(MS)图像与全色(PAN)图像结合生成高分辨率多光谱(HRMS)图像的遥感图像融合技术。本文提出了一种新的泛锐化优化模型。该模型由三个术语组成:(i)通过推断源MS图像与融合图像之间的关系来建立数据合成保真度术语,以保留光谱信息;(ii)基于总广义变化的先验术语,将PAN图像中的重要空间细节注入泛锐化图像;(iii)利用多光谱图像波段之间的相关性来减小光谱失真术语。为了解决由此产生的凸优化问题,提出了一种基于乘法器交替方向法(ADMM)算法的高效且保证收敛的算子分裂框架。最后,利用全分辨率和降分辨率数据对该模型进行了实验验证。泛锐化的结果显示了该方法在提高空间和光谱质量方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variational pan-sharpening algorithm to enhance the spectral and spatial details
ABSTRACT Pan-sharpening is a remote sensing image fusion technique that generates a high-resolution multispectral (HRMS) image on combining a low resolution multispectral (MS) image and a panchromatic (PAN) image. In this paper, a new optimisation model is proposed for pan-sharpening. The proposed model consists of three terms: (i) a data synthesis fidelity term formulated on inferring the relationship between source MS image and fused image to preserve the spectral information, (ii) a total generalised variation-based prior term to inject the significant spatial details from PAN image to pan-sharpened image, and (iii) a spectral distortion reduction term that exploits the correlation between multispectral image bands. To solve the resultant convex optimisation problem, an efficient and convergence guaranteed operator splitting framework based on the alternating direction method of multipliers (ADMM) algorithm is formulated. Finally, the proposed model is experimentally validated using full-resolution and reduced-resolution data. The pan-sharpened outcomes exhibit the potential of the proposed method in enhancing the spatial and spectral quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
10
期刊介绍: International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信