非交换Wiener-Wintner型遍历定理

IF 0.7 3区 数学 Q2 MATHEMATICS
Morgan O'Brien
{"title":"非交换Wiener-Wintner型遍历定理","authors":"Morgan O'Brien","doi":"10.4064/sm211209-26-8","DOIUrl":null,"url":null,"abstract":". In this article, we obtain a version of the noncommutative Banach Principle suitable to prove Wiener-Wintner type results for weights in W 1 space. This is used to obtain noncommutative Wiener-Wintner type ergodic theorems for various types of weights for certain types of positive Dunford-Schwartz operators. We also study the b.a.u. (a.u.) convergence of some subsequential averages and moving averages of such operators.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Noncommutative Wiener–Wintner type ergodic theorems\",\"authors\":\"Morgan O'Brien\",\"doi\":\"10.4064/sm211209-26-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this article, we obtain a version of the noncommutative Banach Principle suitable to prove Wiener-Wintner type results for weights in W 1 space. This is used to obtain noncommutative Wiener-Wintner type ergodic theorems for various types of weights for certain types of positive Dunford-Schwartz operators. We also study the b.a.u. (a.u.) convergence of some subsequential averages and moving averages of such operators.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm211209-26-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm211209-26-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们得到了一个适用于证明W1空间中权的Wiener-Wintner型结果的非对易Banach原理的版本。这用于获得某些类型的正Dunford-Schwartz算子的各种类型的权的非对易Wiener-Wintner型遍历定理。我们还研究了这类算子的一些次序列平均值和移动平均值的b.a.u.(a.u.)收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncommutative Wiener–Wintner type ergodic theorems
. In this article, we obtain a version of the noncommutative Banach Principle suitable to prove Wiener-Wintner type results for weights in W 1 space. This is used to obtain noncommutative Wiener-Wintner type ergodic theorems for various types of weights for certain types of positive Dunford-Schwartz operators. We also study the b.a.u. (a.u.) convergence of some subsequential averages and moving averages of such operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信