大都市郊区PM1.0的化学特征及氧化潜能

IF 1 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
Myoung-Ki Song, Jinsoo Park, Minsung Kim, Jinsoo Choi, Sea-Ho Oh, Seoyeong Choe, Geun-Hye Yu, T. Lee, M. Bae
{"title":"大都市郊区PM1.0的化学特征及氧化潜能","authors":"Myoung-Ki Song, Jinsoo Park, Minsung Kim, Jinsoo Choi, Sea-Ho Oh, Seoyeong Choe, Geun-Hye Yu, T. Lee, M. Bae","doi":"10.5572/kosae.2022.38.3.437","DOIUrl":null,"url":null,"abstract":"Scientific analyses were carried out to investigate the characteristics of both ultra-fine (PM1.0) and fine particulate matters (PM2.5) based on chemical speciation collected at National Institute of Environmental Research in Incheon, Repulic of Korea. In this study, PM1.0 and PM2.5 mass were monitored using two betaray instruments simultaneously. Organic carbon, elemental carbon, water soluble ionic compounds, and polycyclic aromatic hydrocarbons were analyzed using carbon analyzer, ion chromatography, and gas chromatography, respectively. In addition, the oxidation potential using dithiothreitol were investigated to compare the level of toxicities in PM1.0 and PM2.5. As a result, although characteristics of major chemical components in PM1.0 and PM2.5 were similar, oxidation potential in PM1.0 were presented higher than that in PM2.5 due to organic compounds related to toxic compounds. This result will be able to investigate the health studies and policy strategies associated with PM1.0.","PeriodicalId":16269,"journal":{"name":"Journal of Korean Society for Atmospheric Environment","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Characteristics and Oxidation Potential of PM1.0 at a Suburban Location in Metropolitan Area\",\"authors\":\"Myoung-Ki Song, Jinsoo Park, Minsung Kim, Jinsoo Choi, Sea-Ho Oh, Seoyeong Choe, Geun-Hye Yu, T. Lee, M. Bae\",\"doi\":\"10.5572/kosae.2022.38.3.437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific analyses were carried out to investigate the characteristics of both ultra-fine (PM1.0) and fine particulate matters (PM2.5) based on chemical speciation collected at National Institute of Environmental Research in Incheon, Repulic of Korea. In this study, PM1.0 and PM2.5 mass were monitored using two betaray instruments simultaneously. Organic carbon, elemental carbon, water soluble ionic compounds, and polycyclic aromatic hydrocarbons were analyzed using carbon analyzer, ion chromatography, and gas chromatography, respectively. In addition, the oxidation potential using dithiothreitol were investigated to compare the level of toxicities in PM1.0 and PM2.5. As a result, although characteristics of major chemical components in PM1.0 and PM2.5 were similar, oxidation potential in PM1.0 were presented higher than that in PM2.5 due to organic compounds related to toxic compounds. This result will be able to investigate the health studies and policy strategies associated with PM1.0.\",\"PeriodicalId\":16269,\"journal\":{\"name\":\"Journal of Korean Society for Atmospheric Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Korean Society for Atmospheric Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5572/kosae.2022.38.3.437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Society for Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5572/kosae.2022.38.3.437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

根据韩国仁川国家环境研究所收集的化学形态,进行了科学分析,以调查超细颗粒物(PM1.0)和细颗粒物(PM2.5)的特征。在这项研究中,同时使用两台倍他射线仪器监测PM1.0和PM2.5质量。分别使用碳分析仪、离子色谱法和气相色谱法分析有机碳、元素碳、水溶性离子化合物和多环芳烃。此外,还研究了使用二硫苏糖醇的氧化潜力,以比较PM1.0和PM2.5中的毒性水平。因此,尽管PM1.0和PM2.5中主要化学成分的特征相似,但由于与有毒化合物相关的有机化合物,PM1.0中的氧化潜力高于PM2.5。这一结果将能够调查与PM1.0相关的健康研究和政策策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical Characteristics and Oxidation Potential of PM1.0 at a Suburban Location in Metropolitan Area
Scientific analyses were carried out to investigate the characteristics of both ultra-fine (PM1.0) and fine particulate matters (PM2.5) based on chemical speciation collected at National Institute of Environmental Research in Incheon, Repulic of Korea. In this study, PM1.0 and PM2.5 mass were monitored using two betaray instruments simultaneously. Organic carbon, elemental carbon, water soluble ionic compounds, and polycyclic aromatic hydrocarbons were analyzed using carbon analyzer, ion chromatography, and gas chromatography, respectively. In addition, the oxidation potential using dithiothreitol were investigated to compare the level of toxicities in PM1.0 and PM2.5. As a result, although characteristics of major chemical components in PM1.0 and PM2.5 were similar, oxidation potential in PM1.0 were presented higher than that in PM2.5 due to organic compounds related to toxic compounds. This result will be able to investigate the health studies and policy strategies associated with PM1.0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Korean Society for Atmospheric Environment
Journal of Korean Society for Atmospheric Environment METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
2.00
自引率
60.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信