哈密顿偏微分方程中的混沌共振动力学和能量交换

IF 0.6 4区 数学 Q3 MATHEMATICS
Filippo Giuliani, M. Guardia, Pau Martín, S. Pasquali
{"title":"哈密顿偏微分方程中的混沌共振动力学和能量交换","authors":"Filippo Giuliani, M. Guardia, Pau Martín, S. Pasquali","doi":"10.4171/rlm/931","DOIUrl":null,"url":null,"abstract":"The aim of this note is to present the recent results in [16] where we provide the existence of solutions of some nonlinear resonant PDEs on the 2-dimensional torus exchanging energy among Fourier modes in a \\emph{chaotic-like} way. We say that a transition of energy is \\emph{chaotic-like} if either the choice of activated modes or the time spent in each transfer can be chosen randomly. We consider the nonlinear cubic Wave, the Hartree and the nonlinear cubic Beam equations. The key point of the construction of the special solutions is the existence of heteroclinic connections between invariant objects and the construction of symbolic dynamics (a Smale horseshoe) for the Birkhoff Normal Form of those equations.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chaotic resonant dynamics and exchanges of energy in Hamiltonian PDEs\",\"authors\":\"Filippo Giuliani, M. Guardia, Pau Martín, S. Pasquali\",\"doi\":\"10.4171/rlm/931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this note is to present the recent results in [16] where we provide the existence of solutions of some nonlinear resonant PDEs on the 2-dimensional torus exchanging energy among Fourier modes in a \\\\emph{chaotic-like} way. We say that a transition of energy is \\\\emph{chaotic-like} if either the choice of activated modes or the time spent in each transfer can be chosen randomly. We consider the nonlinear cubic Wave, the Hartree and the nonlinear cubic Beam equations. The key point of the construction of the special solutions is the existence of heteroclinic connections between invariant objects and the construction of symbolic dynamics (a Smale horseshoe) for the Birkhoff Normal Form of those equations.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rlm/931\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/931","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是介绍[16]中的最新结果,其中我们提供了一些非线性共振偏微分方程在二维环面上的解的存在性,这些解以类似混沌的方式在傅立叶模式之间交换能量。我们说,如果激活模式的选择或每次转移所花费的时间可以随机选择,那么能量的转移就是类似混沌的。我们考虑了非线性三次波、Hartree方程和非线性三次梁方程。构造特殊解的关键点是不变对象之间的异宿连接的存在,以及这些方程的Birkhoff范式的符号动力学(Smale马蹄形)的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaotic resonant dynamics and exchanges of energy in Hamiltonian PDEs
The aim of this note is to present the recent results in [16] where we provide the existence of solutions of some nonlinear resonant PDEs on the 2-dimensional torus exchanging energy among Fourier modes in a \emph{chaotic-like} way. We say that a transition of energy is \emph{chaotic-like} if either the choice of activated modes or the time spent in each transfer can be chosen randomly. We consider the nonlinear cubic Wave, the Hartree and the nonlinear cubic Beam equations. The key point of the construction of the special solutions is the existence of heteroclinic connections between invariant objects and the construction of symbolic dynamics (a Smale horseshoe) for the Birkhoff Normal Form of those equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信