期望最优性问题的PDE方法

IF 0.7 Q2 MATHEMATICS
M. Hasanov
{"title":"期望最优性问题的PDE方法","authors":"M. Hasanov","doi":"10.28924/2291-8639-21-2023-57","DOIUrl":null,"url":null,"abstract":"Let (X, Z) be a bivariate random vector. A predictor of X based on Z is just a Borel function g(Z). The problem of \"least squares prediction\" of X given the observation Z is to find the global minimum point of the functional E[(X − g(Z))2] with respect to all random variables g(Z), where g is a Borel function. It is well known that the solution of this problem is the conditional expectation E(X|Z). We also know that, if for a nonnegative smooth function F: R×R → R, arg ming(Z)E[F(X, g(Z))] = E[X|Z], for all X and Z, then F(x, y) is a Bregmann loss function. It is also of interest, for a fixed ϕ to find F (x, y), satisfying, arg ming(Z)E[F(X, g(Z))] = ϕ(E[X|Z]), for all X and Z. In more general setting, a stronger problem is to find F (x, y) satisfying arg miny∈RE[F (X, y)] = ϕ(E[X]), ∀X. We study this problem and develop a partial differential equation (PDE) approach to solution of these problems.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PDE Approach to the Problems of Optimality of Expectations\",\"authors\":\"M. Hasanov\",\"doi\":\"10.28924/2291-8639-21-2023-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (X, Z) be a bivariate random vector. A predictor of X based on Z is just a Borel function g(Z). The problem of \\\"least squares prediction\\\" of X given the observation Z is to find the global minimum point of the functional E[(X − g(Z))2] with respect to all random variables g(Z), where g is a Borel function. It is well known that the solution of this problem is the conditional expectation E(X|Z). We also know that, if for a nonnegative smooth function F: R×R → R, arg ming(Z)E[F(X, g(Z))] = E[X|Z], for all X and Z, then F(x, y) is a Bregmann loss function. It is also of interest, for a fixed ϕ to find F (x, y), satisfying, arg ming(Z)E[F(X, g(Z))] = ϕ(E[X|Z]), for all X and Z. In more general setting, a stronger problem is to find F (x, y) satisfying arg miny∈RE[F (X, y)] = ϕ(E[X]), ∀X. We study this problem and develop a partial differential equation (PDE) approach to solution of these problems.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设(X,Z)为二元随机向量。基于Z的X的预测器只是Borel函数g(Z)。给定观测值Z的X的“最小二乘预测”问题是找到函数E[(X−g(Z))2]相对于所有随机变量g(Z)的全局最小点,其中g是Borel函数。众所周知,这个问题的解是条件期望E(X|Z)。我们还知道,如果对于非负光滑函数F:R×R→ R、 arg-ming(Z)E[F(X,g(Z))]=E[X|Z],对于所有X和Z,则F(X,y)是Bregmann损失函数。同样令人感兴趣的是,对于固定的Γ,找到F(x,y),对于所有x和Z,满足arg ming(Z)E[F(x,g(Z))]=Γ(E[x]Z])。我们研究了这个问题,并发展了一种偏微分方程(PDE)方法来解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PDE Approach to the Problems of Optimality of Expectations
Let (X, Z) be a bivariate random vector. A predictor of X based on Z is just a Borel function g(Z). The problem of "least squares prediction" of X given the observation Z is to find the global minimum point of the functional E[(X − g(Z))2] with respect to all random variables g(Z), where g is a Borel function. It is well known that the solution of this problem is the conditional expectation E(X|Z). We also know that, if for a nonnegative smooth function F: R×R → R, arg ming(Z)E[F(X, g(Z))] = E[X|Z], for all X and Z, then F(x, y) is a Bregmann loss function. It is also of interest, for a fixed ϕ to find F (x, y), satisfying, arg ming(Z)E[F(X, g(Z))] = ϕ(E[X|Z]), for all X and Z. In more general setting, a stronger problem is to find F (x, y) satisfying arg miny∈RE[F (X, y)] = ϕ(E[X]), ∀X. We study this problem and develop a partial differential equation (PDE) approach to solution of these problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信