四次势薛定谔方程的近似解

Q3 Mathematics
Soon-Mo Jung, Byungbae Kim
{"title":"四次势薛定谔方程的近似解","authors":"Soon-Mo Jung, Byungbae Kim","doi":"10.22771/NFAA.2021.26.01.11","DOIUrl":null,"url":null,"abstract":"Recently we investigated a type of Hyers-Ulam stability of the Schrodinger equation with the symmetric parabolic wall potential that efficiently describes the quantum harmonic oscillations. In this paper we study a type of Hyers-Ulam stability of the Schrodinger equation when the potential barrier is a quartic wall in the solid crystal models.","PeriodicalId":37534,"journal":{"name":"Nonlinear Functional Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPROXIMATE SOLUTIONS OF SCHRÖDINGER EQUATION WITH A QUARTIC POTENTIAL\",\"authors\":\"Soon-Mo Jung, Byungbae Kim\",\"doi\":\"10.22771/NFAA.2021.26.01.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently we investigated a type of Hyers-Ulam stability of the Schrodinger equation with the symmetric parabolic wall potential that efficiently describes the quantum harmonic oscillations. In this paper we study a type of Hyers-Ulam stability of the Schrodinger equation when the potential barrier is a quartic wall in the solid crystal models.\",\"PeriodicalId\":37534,\"journal\":{\"name\":\"Nonlinear Functional Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Functional Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22771/NFAA.2021.26.01.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Functional Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22771/NFAA.2021.26.01.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有对称抛物壁势的薛定谔方程的Hyers-Ulam稳定性,它能有效地描述量子谐振。本文研究了固体晶体模型中势垒为四次壁时薛定谔方程的一类Hyers-Ulam稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APPROXIMATE SOLUTIONS OF SCHRÖDINGER EQUATION WITH A QUARTIC POTENTIAL
Recently we investigated a type of Hyers-Ulam stability of the Schrodinger equation with the symmetric parabolic wall potential that efficiently describes the quantum harmonic oscillations. In this paper we study a type of Hyers-Ulam stability of the Schrodinger equation when the potential barrier is a quartic wall in the solid crystal models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊介绍: The international mathematical journal NFAA will publish carefully selected original research papers on nonlinear functional analysis and applications, that is, ordinary differential equations, all kinds of partial differential equations, functional differential equations, integrodifferential equations, control theory, approximation theory, optimal control, optimization theory, numerical analysis, variational inequality, asymptotic behavior, fixed point theory, dynamic systems and complementarity problems. Papers for publication will be communicated and recommended by the members of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信