基于深度学习神经网络的聚合物基混合基质膜力学性能建模

IF 2.8 Q2 ENGINEERING, CHEMICAL
Zaid Alhulaybi, Muhammad Martuza, S. Rushd
{"title":"基于深度学习神经网络的聚合物基混合基质膜力学性能建模","authors":"Zaid Alhulaybi, Muhammad Martuza, S. Rushd","doi":"10.3390/chemengineering7050080","DOIUrl":null,"url":null,"abstract":"Polylactic acid (PLA), the second most produced biopolymer, was selected for the fabrication of mixed-matrix membranes (MMMs) via the incorporation of HKUST-1 metal–organic framework (MOF) particles into a PLA matrix with the aim of improving mechanical characteristics. A deep learning neural network (DLNN) model was developed on the TensorFlow 2 backend to predict the mechanical properties, stress, strain, elastic modulus, and toughness of the PLA/HKUST-1 MMMs with different input parameters, such as PLA wt%, HKUST-1 wt%, casting thickness, and immersion time. The model was trained and validated with 1214 interpolated datasets in stratified fivefold cross validation. Dropout and early stopping regularizations were applied to prevent model overfitting in the training phase. The model performed consistently for the unknown interpolated datasets and 26 original experimental datasets, with coefficients of determination (R2) of 0.93–0.97 and 0.78–0.88, respectively. The results suggest that the proposed method can build effective DLNNmodels using a small dataset to predict material properties.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Mechanical Properties of a Polymer-Based Mixed-Matrix Membrane Using Deep Learning \\nNeural Networks\",\"authors\":\"Zaid Alhulaybi, Muhammad Martuza, S. Rushd\",\"doi\":\"10.3390/chemengineering7050080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polylactic acid (PLA), the second most produced biopolymer, was selected for the fabrication of mixed-matrix membranes (MMMs) via the incorporation of HKUST-1 metal–organic framework (MOF) particles into a PLA matrix with the aim of improving mechanical characteristics. A deep learning neural network (DLNN) model was developed on the TensorFlow 2 backend to predict the mechanical properties, stress, strain, elastic modulus, and toughness of the PLA/HKUST-1 MMMs with different input parameters, such as PLA wt%, HKUST-1 wt%, casting thickness, and immersion time. The model was trained and validated with 1214 interpolated datasets in stratified fivefold cross validation. Dropout and early stopping regularizations were applied to prevent model overfitting in the training phase. The model performed consistently for the unknown interpolated datasets and 26 original experimental datasets, with coefficients of determination (R2) of 0.93–0.97 and 0.78–0.88, respectively. The results suggest that the proposed method can build effective DLNNmodels using a small dataset to predict material properties.\",\"PeriodicalId\":9755,\"journal\":{\"name\":\"ChemEngineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemengineering7050080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7050080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚乳酸(PLA)是产量第二高的生物聚合物,通过将HKUST-1金属有机框架(MOF)颗粒掺入PLA基质中,用于制造混合基质膜(MMMs),目的是改善机械特性。在TensorFlow 2上建立深度学习神经网络(DLNN)模型,预测PLA/HKUST-1 mmmm在不同输入参数(PLA wt%、HKUST-1 wt%、铸件厚度和浸泡时间)下的力学性能、应力、应变、弹性模量和韧性。在分层五重交叉验证中,使用1214个插值数据集对模型进行训练和验证。应用Dropout和早期停止正则化来防止模型在训练阶段过拟合。该模型对未知插值数据集和26个原始实验数据集表现一致,决定系数(R2)分别为0.93 ~ 0.97和0.78 ~ 0.88。结果表明,该方法可以利用小数据集建立有效的dlnn模型来预测材料性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the Mechanical Properties of a Polymer-Based Mixed-Matrix Membrane Using Deep Learning Neural Networks
Polylactic acid (PLA), the second most produced biopolymer, was selected for the fabrication of mixed-matrix membranes (MMMs) via the incorporation of HKUST-1 metal–organic framework (MOF) particles into a PLA matrix with the aim of improving mechanical characteristics. A deep learning neural network (DLNN) model was developed on the TensorFlow 2 backend to predict the mechanical properties, stress, strain, elastic modulus, and toughness of the PLA/HKUST-1 MMMs with different input parameters, such as PLA wt%, HKUST-1 wt%, casting thickness, and immersion time. The model was trained and validated with 1214 interpolated datasets in stratified fivefold cross validation. Dropout and early stopping regularizations were applied to prevent model overfitting in the training phase. The model performed consistently for the unknown interpolated datasets and 26 original experimental datasets, with coefficients of determination (R2) of 0.93–0.97 and 0.78–0.88, respectively. The results suggest that the proposed method can build effective DLNNmodels using a small dataset to predict material properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemEngineering
ChemEngineering Engineering-Engineering (all)
CiteScore
4.00
自引率
4.00%
发文量
88
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信