{"title":"奇异负弯曲流形的对称性","authors":"Mauricio Bustamante, Bena Tshishiku","doi":"10.4310/jdg/1645207478","DOIUrl":null,"url":null,"abstract":"Let $N$ be a smooth manifold that is homeomorphic but not diffeomorphic to a closed hyperbolic manifold $M$. In this paper, we study the extent to which $N$ admits as much symmetry as $M$. Our main results are examples of $N$ that exhibit two extremes of behavior. On the one hand, we find $N$ with maximal symmetry, i.e. Isom($M$) acts on $N$ by isometries with respect to some negatively curved metric on $N$. For these examples, Isom($M$) can be made arbitrarily large. On the other hand, we find $N$ with little symmetry, i.e. no subgroup of Isom($M$) of \"small\" index acts by diffeomorphisms of $N$. The construction of these examples incorporates a variety of techniques including smoothing theory and the Belolipetsky-Lubotzky method for constructing hyperbolic manifolds with a prescribed isometry group.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Symmetries of exotic negatively curved manifolds\",\"authors\":\"Mauricio Bustamante, Bena Tshishiku\",\"doi\":\"10.4310/jdg/1645207478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $N$ be a smooth manifold that is homeomorphic but not diffeomorphic to a closed hyperbolic manifold $M$. In this paper, we study the extent to which $N$ admits as much symmetry as $M$. Our main results are examples of $N$ that exhibit two extremes of behavior. On the one hand, we find $N$ with maximal symmetry, i.e. Isom($M$) acts on $N$ by isometries with respect to some negatively curved metric on $N$. For these examples, Isom($M$) can be made arbitrarily large. On the other hand, we find $N$ with little symmetry, i.e. no subgroup of Isom($M$) of \\\"small\\\" index acts by diffeomorphisms of $N$. The construction of these examples incorporates a variety of techniques including smoothing theory and the Belolipetsky-Lubotzky method for constructing hyperbolic manifolds with a prescribed isometry group.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1645207478\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1645207478","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $N$ be a smooth manifold that is homeomorphic but not diffeomorphic to a closed hyperbolic manifold $M$. In this paper, we study the extent to which $N$ admits as much symmetry as $M$. Our main results are examples of $N$ that exhibit two extremes of behavior. On the one hand, we find $N$ with maximal symmetry, i.e. Isom($M$) acts on $N$ by isometries with respect to some negatively curved metric on $N$. For these examples, Isom($M$) can be made arbitrarily large. On the other hand, we find $N$ with little symmetry, i.e. no subgroup of Isom($M$) of "small" index acts by diffeomorphisms of $N$. The construction of these examples incorporates a variety of techniques including smoothing theory and the Belolipetsky-Lubotzky method for constructing hyperbolic manifolds with a prescribed isometry group.
期刊介绍:
Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.