{"title":"利用脉冲属性数据从激光雷达点云提取浅水测深:融合基于密度的方法和机器学习方法","authors":"K. Lowell, B. Calder","doi":"10.1080/01490419.2021.1925790","DOIUrl":null,"url":null,"abstract":"Abstract To automate extraction of bathymetric soundings from lidar point clouds, two machine learning (ML 1 ) techniques were combined with a more conventional density-based algorithm. The study area was four data “tiles” near the Florida Keys. The density-based algorithm determined the most likely depth (MLD) for a grid of “estimation nodes” (ENs). Unsupervised k-means clustering determined which EN’s MLD depth and associated soundings represented ocean depth rather than ocean surface or noise to produce a preliminary classification. An extreme gradient boosting (XGB) model was fitted to pulse return metadata – e.g. return intensity, incidence angle – to produce a final Bathy/NotBathy classification. Compared to an operationally produced reference classification, the XGB model increased global accuracy and decreased the false negative rate (FNR) – i.e. undetected bathymetry – that are most important for nautical navigation for all but one tile. Agreement between the final XGB and operational reference classifications ranged from 0.84 to 0.999. Imbalance between Bathy and NotBathy was addressed using a probability decision threshold that equalizes the FNR and the true positive rate (TPR). Two methods are presented for visually evaluating differences between the two classifications spatially and in feature-space.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"259 - 286"},"PeriodicalIF":2.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1925790","citationCount":"7","resultStr":"{\"title\":\"Extracting Shallow-Water Bathymetry from Lidar Point Clouds Using Pulse Attribute Data: Merging Density-Based and Machine Learning Approaches\",\"authors\":\"K. Lowell, B. Calder\",\"doi\":\"10.1080/01490419.2021.1925790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To automate extraction of bathymetric soundings from lidar point clouds, two machine learning (ML 1 ) techniques were combined with a more conventional density-based algorithm. The study area was four data “tiles” near the Florida Keys. The density-based algorithm determined the most likely depth (MLD) for a grid of “estimation nodes” (ENs). Unsupervised k-means clustering determined which EN’s MLD depth and associated soundings represented ocean depth rather than ocean surface or noise to produce a preliminary classification. An extreme gradient boosting (XGB) model was fitted to pulse return metadata – e.g. return intensity, incidence angle – to produce a final Bathy/NotBathy classification. Compared to an operationally produced reference classification, the XGB model increased global accuracy and decreased the false negative rate (FNR) – i.e. undetected bathymetry – that are most important for nautical navigation for all but one tile. Agreement between the final XGB and operational reference classifications ranged from 0.84 to 0.999. Imbalance between Bathy and NotBathy was addressed using a probability decision threshold that equalizes the FNR and the true positive rate (TPR). Two methods are presented for visually evaluating differences between the two classifications spatially and in feature-space.\",\"PeriodicalId\":49884,\"journal\":{\"name\":\"Marine Geodesy\",\"volume\":\"44 1\",\"pages\":\"259 - 286\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01490419.2021.1925790\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/01490419.2021.1925790\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2021.1925790","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Extracting Shallow-Water Bathymetry from Lidar Point Clouds Using Pulse Attribute Data: Merging Density-Based and Machine Learning Approaches
Abstract To automate extraction of bathymetric soundings from lidar point clouds, two machine learning (ML 1 ) techniques were combined with a more conventional density-based algorithm. The study area was four data “tiles” near the Florida Keys. The density-based algorithm determined the most likely depth (MLD) for a grid of “estimation nodes” (ENs). Unsupervised k-means clustering determined which EN’s MLD depth and associated soundings represented ocean depth rather than ocean surface or noise to produce a preliminary classification. An extreme gradient boosting (XGB) model was fitted to pulse return metadata – e.g. return intensity, incidence angle – to produce a final Bathy/NotBathy classification. Compared to an operationally produced reference classification, the XGB model increased global accuracy and decreased the false negative rate (FNR) – i.e. undetected bathymetry – that are most important for nautical navigation for all but one tile. Agreement between the final XGB and operational reference classifications ranged from 0.84 to 0.999. Imbalance between Bathy and NotBathy was addressed using a probability decision threshold that equalizes the FNR and the true positive rate (TPR). Two methods are presented for visually evaluating differences between the two classifications spatially and in feature-space.
期刊介绍:
The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment.
The journal will consider articles on the following topics:
topography and mapping;
satellite altimetry;
bathymetry;
positioning;
precise navigation;
boundary demarcation and determination;
tsunamis;
plate/tectonics;
geoid determination;
hydrographic and oceanographic observations;
acoustics and space instrumentation;
ground truth;
system calibration and validation;
geographic information systems.