{"title":"图的非回溯路径上矩阵的极限定理","authors":"Takehiro Hasegawa, Takashi Komatsu, Norio Konno, Hayato Saigo, Seiken Saito, Iwao Sato, Shingo Sugiyama","doi":"10.1007/s00026-022-00617-z","DOIUrl":null,"url":null,"abstract":"<div><p>We give a limit theorem with respect to the matrices related to non-backtracking paths of a regular graph. The limit obtained closely resembles the <i>k</i>th moments of the arcsine law. Furthermore, we obtain the asymptotics of the averages of the <span>\\(p^m\\)</span>th Fourier coefficients of the cusp forms related to the Ramanujan graphs defined by A. Lubotzky, R. Phillips and P. Sarnak.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Limit Theorem with Respect to the Matrices on Non-backtracking Paths of a Graph\",\"authors\":\"Takehiro Hasegawa, Takashi Komatsu, Norio Konno, Hayato Saigo, Seiken Saito, Iwao Sato, Shingo Sugiyama\",\"doi\":\"10.1007/s00026-022-00617-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a limit theorem with respect to the matrices related to non-backtracking paths of a regular graph. The limit obtained closely resembles the <i>k</i>th moments of the arcsine law. Furthermore, we obtain the asymptotics of the averages of the <span>\\\\(p^m\\\\)</span>th Fourier coefficients of the cusp forms related to the Ramanujan graphs defined by A. Lubotzky, R. Phillips and P. Sarnak.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-022-00617-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00617-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Limit Theorem with Respect to the Matrices on Non-backtracking Paths of a Graph
We give a limit theorem with respect to the matrices related to non-backtracking paths of a regular graph. The limit obtained closely resembles the kth moments of the arcsine law. Furthermore, we obtain the asymptotics of the averages of the \(p^m\)th Fourier coefficients of the cusp forms related to the Ramanujan graphs defined by A. Lubotzky, R. Phillips and P. Sarnak.