威氏芽孢杆菌2211的生物防治潜力、基因组及非核糖体肽合成酶基因表达

Q3 Agricultural and Biological Sciences
Nantawan Niemhom, Chokchai Kittiwongwattana
{"title":"威氏芽孢杆菌2211的生物防治潜力、基因组及非核糖体肽合成酶基因表达","authors":"Nantawan Niemhom, Chokchai Kittiwongwattana","doi":"10.55003/cast.2022.03.23.005","DOIUrl":null,"url":null,"abstract":"Members of the genus Bacillus produced a diverse group of antimicrobial compounds. Here, we presented the antifungal activity and genome sequence analysis of Bacillus sp. 2211, a potential plant-growth-promoting bacterium. Bacterial supernatants from strain 2211 cultures in nutrient broth (NB) and potato dextrose broth (PDB) suppressed the mycelial growth of Pyricularia oryzae, Colletotrichum aenigma, Colletotrichum fructicola and Fusarium oxysporum. The supernatants were also able to suppress spore germination of these fungi, except for F. oxysporum. However, the supernatant from PDB displayed a significantly higher inhibition activity than NB. Additionally, the supernatant from PDB significantly reduced the disease severity caused by P. oryzae on rice seedlings. The genome of strain 2211 was sequenced. The highest digital DNA-DNA hybridization (80.1%) and average nucleotide identity (97.57%) levels indicated that strain 2211 was a member of the species Bacillus velezensis. The phylogenomic analysis showed that it clustered with B. velezensis NRRL B-41580T, B. velezensis KACC 13105 and B. velezensis subsp. plantarum FZB42T. The gene expression analysis showed the up-regulation of nonribosomal peptide synthetase (NRPS) genes bmyA, fenB and dhbE in PDB, compared to NB. This work demonstrated that the culture media affected the antagonistic activity of strain 2211 possibly through the modification of NRPS biosynthesis genes.","PeriodicalId":36974,"journal":{"name":"Current Applied Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Biocontrol Potential, Genome and Nonribosomal Peptide Synthetase Gene Expression of Bacillus velezensis 2211\",\"authors\":\"Nantawan Niemhom, Chokchai Kittiwongwattana\",\"doi\":\"10.55003/cast.2022.03.23.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Members of the genus Bacillus produced a diverse group of antimicrobial compounds. Here, we presented the antifungal activity and genome sequence analysis of Bacillus sp. 2211, a potential plant-growth-promoting bacterium. Bacterial supernatants from strain 2211 cultures in nutrient broth (NB) and potato dextrose broth (PDB) suppressed the mycelial growth of Pyricularia oryzae, Colletotrichum aenigma, Colletotrichum fructicola and Fusarium oxysporum. The supernatants were also able to suppress spore germination of these fungi, except for F. oxysporum. However, the supernatant from PDB displayed a significantly higher inhibition activity than NB. Additionally, the supernatant from PDB significantly reduced the disease severity caused by P. oryzae on rice seedlings. The genome of strain 2211 was sequenced. The highest digital DNA-DNA hybridization (80.1%) and average nucleotide identity (97.57%) levels indicated that strain 2211 was a member of the species Bacillus velezensis. The phylogenomic analysis showed that it clustered with B. velezensis NRRL B-41580T, B. velezensis KACC 13105 and B. velezensis subsp. plantarum FZB42T. The gene expression analysis showed the up-regulation of nonribosomal peptide synthetase (NRPS) genes bmyA, fenB and dhbE in PDB, compared to NB. This work demonstrated that the culture media affected the antagonistic activity of strain 2211 possibly through the modification of NRPS biosynthesis genes.\",\"PeriodicalId\":36974,\"journal\":{\"name\":\"Current Applied Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55003/cast.2022.03.23.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55003/cast.2022.03.23.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

摘要

芽孢杆菌属的成员产生了各种各样的抗菌化合物。本文报道了一种潜在的植物生长促进菌芽孢杆菌sp. 2211的抗真菌活性和基因组序列分析。菌株2211在营养液(NB)和马铃薯葡萄糖培养液(PDB)中培养的上清液抑制了稻瘟病菌、炭疽菌、果糖炭疽菌和尖孢镰刀菌的菌丝生长。除尖孢镰刀菌外,上清液也能抑制这些真菌的孢子萌发。然而,PDB上清液的抑制活性明显高于NB。此外,PDB上清液显著降低了稻瘟病对水稻幼苗的危害程度。对菌株2211进行了基因组测序。最高的数字DNA-DNA杂交(80.1%)和平均核苷酸一致性(97.57%)水平表明菌株2211是芽孢杆菌的成员。系统发育分析表明,该菌株与白僵菌NRRL B-41580T、白僵菌KACC 13105和白僵菌亚种聚类。杆菌FZB42T。基因表达分析显示,与NB相比,PDB中非核糖体肽合成酶(NRPS)基因bmyA、fenB和dhbE表达上调。本研究表明,培养基可能通过修饰NRPS生物合成基因来影响菌株2211的拮抗活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biocontrol Potential, Genome and Nonribosomal Peptide Synthetase Gene Expression of Bacillus velezensis 2211
Members of the genus Bacillus produced a diverse group of antimicrobial compounds. Here, we presented the antifungal activity and genome sequence analysis of Bacillus sp. 2211, a potential plant-growth-promoting bacterium. Bacterial supernatants from strain 2211 cultures in nutrient broth (NB) and potato dextrose broth (PDB) suppressed the mycelial growth of Pyricularia oryzae, Colletotrichum aenigma, Colletotrichum fructicola and Fusarium oxysporum. The supernatants were also able to suppress spore germination of these fungi, except for F. oxysporum. However, the supernatant from PDB displayed a significantly higher inhibition activity than NB. Additionally, the supernatant from PDB significantly reduced the disease severity caused by P. oryzae on rice seedlings. The genome of strain 2211 was sequenced. The highest digital DNA-DNA hybridization (80.1%) and average nucleotide identity (97.57%) levels indicated that strain 2211 was a member of the species Bacillus velezensis. The phylogenomic analysis showed that it clustered with B. velezensis NRRL B-41580T, B. velezensis KACC 13105 and B. velezensis subsp. plantarum FZB42T. The gene expression analysis showed the up-regulation of nonribosomal peptide synthetase (NRPS) genes bmyA, fenB and dhbE in PDB, compared to NB. This work demonstrated that the culture media affected the antagonistic activity of strain 2211 possibly through the modification of NRPS biosynthesis genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Science and Technology
Current Applied Science and Technology Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
1.50
自引率
0.00%
发文量
51
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信