农业工业废弃物萃取物绿色合成抗菌银纳米胶体,LED辅助

IF 2.5 Q3 CHEMISTRY, PHYSICAL
Ambar Cañadas, Arleth Gualle, K. Vizuete, A. Debut, P. Rojas-Silva, S. Ponce, Lourdes M. Orejuela-Escobar
{"title":"农业工业废弃物萃取物绿色合成抗菌银纳米胶体,LED辅助","authors":"Ambar Cañadas, Arleth Gualle, K. Vizuete, A. Debut, P. Rojas-Silva, S. Ponce, Lourdes M. Orejuela-Escobar","doi":"10.3390/colloids6040074","DOIUrl":null,"url":null,"abstract":"Herein, the green synthesis of silver nanoparticles (AgNPs), assisted by LED light, using the aqueous extracts of agroindustrial waste products, such as avocado seeds (ASs), cocoa pod husks (CPHs), and orange peels (OPs), is presented. Surface plasmon resonance analysis showed faster and complete NP formation when irradiated with blue LED light. Green and red light irradiation showed non- and limited nanoparticle formation. TEM analyses confirmed the semispherical morphology of the synthesized AgNPs, with the exception of OP–AgNPs, which showed agglomeration during the light irradiation. For AS–AgNPs and CPH–AgNPs, the average particle diameter was about 15 nm. Interestingly, the CPH extract demonstrated faster nanoparticle formation as compared to the AS extract (100 min vs. 250 min irradiation time, respectively). FTIR spectroscopy assessed the involvement of diverse functional groups of the bioactive phytochemicals present in the plant extracts during nanoparticle photobiosynthesis. The antioxidant activity, as determined by ferric reducing antioxidant power (FRAP) assay, varied from 1323.72 µmol TE/mL in the AS aqueous extract to 836.50 µmol TE/mL in the CPH aqueous extract. The total polyphenol content was determined according to the Folin–Ciocalteu procedure; the AS aqueous extract exhibited a higher polyphenol content (1.54 mg GAE/g) than did the CPH aqueous extract (0.948 mg GAE/g). In vitro antibacterial assays revealed that the AS–AgNPs exhibited promising antibacterial properties against pathogenic bacteria (E. Coli), whereas the CPH–AgNPs showed antibacterial activity against S. aureus and E. coli. The green synthesis of AgNPs using AS, CPH, and OP aqueous extracts reported in this work is environmentally friendly and cost-effective, and it paves the way for future studies related to agroindustrial waste valorization for the production of advanced nanomaterials, such as antibacterial AgNPs, for potential biomedical, industrial, and environmental applications.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Green Synthesis of Antibacterial Silver Nanocolloids with Agroindustrial Waste Extracts, Assisted by LED Light\",\"authors\":\"Ambar Cañadas, Arleth Gualle, K. Vizuete, A. Debut, P. Rojas-Silva, S. Ponce, Lourdes M. Orejuela-Escobar\",\"doi\":\"10.3390/colloids6040074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, the green synthesis of silver nanoparticles (AgNPs), assisted by LED light, using the aqueous extracts of agroindustrial waste products, such as avocado seeds (ASs), cocoa pod husks (CPHs), and orange peels (OPs), is presented. Surface plasmon resonance analysis showed faster and complete NP formation when irradiated with blue LED light. Green and red light irradiation showed non- and limited nanoparticle formation. TEM analyses confirmed the semispherical morphology of the synthesized AgNPs, with the exception of OP–AgNPs, which showed agglomeration during the light irradiation. For AS–AgNPs and CPH–AgNPs, the average particle diameter was about 15 nm. Interestingly, the CPH extract demonstrated faster nanoparticle formation as compared to the AS extract (100 min vs. 250 min irradiation time, respectively). FTIR spectroscopy assessed the involvement of diverse functional groups of the bioactive phytochemicals present in the plant extracts during nanoparticle photobiosynthesis. The antioxidant activity, as determined by ferric reducing antioxidant power (FRAP) assay, varied from 1323.72 µmol TE/mL in the AS aqueous extract to 836.50 µmol TE/mL in the CPH aqueous extract. The total polyphenol content was determined according to the Folin–Ciocalteu procedure; the AS aqueous extract exhibited a higher polyphenol content (1.54 mg GAE/g) than did the CPH aqueous extract (0.948 mg GAE/g). In vitro antibacterial assays revealed that the AS–AgNPs exhibited promising antibacterial properties against pathogenic bacteria (E. Coli), whereas the CPH–AgNPs showed antibacterial activity against S. aureus and E. coli. The green synthesis of AgNPs using AS, CPH, and OP aqueous extracts reported in this work is environmentally friendly and cost-effective, and it paves the way for future studies related to agroindustrial waste valorization for the production of advanced nanomaterials, such as antibacterial AgNPs, for potential biomedical, industrial, and environmental applications.\",\"PeriodicalId\":10433,\"journal\":{\"name\":\"Colloids and Interfaces\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colloids6040074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colloids6040074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了在LED光的辅助下,利用农业工业废物的水提取物,如鳄梨籽(ASs)、可可荚壳(CPHs)和橘子皮(OP),绿色合成银纳米颗粒(AgNPs)。表面等离子体共振分析显示,当用蓝色LED光照射时,NP形成更快且完全。绿光和红光照射显示出非和有限的纳米颗粒形成。TEM分析证实了合成的AgNPs的半球形形态,但OP–AgNPs除外,其在光照射过程中显示出团聚。对于AS–AgNP和CPH–AgNP,平均粒径约为15 nm。有趣的是,与as提取物相比,CPH提取物表现出更快的纳米颗粒形成(分别为100分钟和250分钟的照射时间)。FTIR光谱评估了在纳米颗粒光生物合成过程中,植物提取物中存在的生物活性植物化学物质的不同官能团的参与。通过铁还原抗氧化能力(FRAP)测定法测定的抗氧化活性从as水提取物中的1323.72µmol TE/mL到CPH水提取液中的836.50µmol TE/mL不等。根据Folin–Ciocalteu程序测定总多酚含量;AS水性提取物表现出比CPH水性提取物(0.948mg GAE/g)更高的多酚含量(1.54mg GAE/g)。体外抗菌试验显示,AS–AgNPs对致病菌(大肠杆菌)表现出良好的抗菌性能,而CPH–AgNPs对金黄色葡萄球菌和大肠杆菌表现出抗菌活性。本工作中报道的使用AS、CPH和OP水提取物的AgNPs的绿色合成是环境友好和成本效益高的,它为未来与农业工业废物价值化相关的研究铺平了道路,用于生产先进的纳米材料,如抗菌AgNPs,用于潜在的生物医学、工业和环境应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Synthesis of Antibacterial Silver Nanocolloids with Agroindustrial Waste Extracts, Assisted by LED Light
Herein, the green synthesis of silver nanoparticles (AgNPs), assisted by LED light, using the aqueous extracts of agroindustrial waste products, such as avocado seeds (ASs), cocoa pod husks (CPHs), and orange peels (OPs), is presented. Surface plasmon resonance analysis showed faster and complete NP formation when irradiated with blue LED light. Green and red light irradiation showed non- and limited nanoparticle formation. TEM analyses confirmed the semispherical morphology of the synthesized AgNPs, with the exception of OP–AgNPs, which showed agglomeration during the light irradiation. For AS–AgNPs and CPH–AgNPs, the average particle diameter was about 15 nm. Interestingly, the CPH extract demonstrated faster nanoparticle formation as compared to the AS extract (100 min vs. 250 min irradiation time, respectively). FTIR spectroscopy assessed the involvement of diverse functional groups of the bioactive phytochemicals present in the plant extracts during nanoparticle photobiosynthesis. The antioxidant activity, as determined by ferric reducing antioxidant power (FRAP) assay, varied from 1323.72 µmol TE/mL in the AS aqueous extract to 836.50 µmol TE/mL in the CPH aqueous extract. The total polyphenol content was determined according to the Folin–Ciocalteu procedure; the AS aqueous extract exhibited a higher polyphenol content (1.54 mg GAE/g) than did the CPH aqueous extract (0.948 mg GAE/g). In vitro antibacterial assays revealed that the AS–AgNPs exhibited promising antibacterial properties against pathogenic bacteria (E. Coli), whereas the CPH–AgNPs showed antibacterial activity against S. aureus and E. coli. The green synthesis of AgNPs using AS, CPH, and OP aqueous extracts reported in this work is environmentally friendly and cost-effective, and it paves the way for future studies related to agroindustrial waste valorization for the production of advanced nanomaterials, such as antibacterial AgNPs, for potential biomedical, industrial, and environmental applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Interfaces
Colloids and Interfaces CHEMISTRY, PHYSICAL-
CiteScore
3.90
自引率
4.20%
发文量
64
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信