无界层状介质中波传播的轴对称尺度边界有限元公式

IF 1 Q4 ENGINEERING, CIVIL
Mojtaba Aslmand, I. M. Kani
{"title":"无界层状介质中波传播的轴对称尺度边界有限元公式","authors":"Mojtaba Aslmand, I. M. Kani","doi":"10.22059/CEIJ.2019.263233.1503","DOIUrl":null,"url":null,"abstract":"Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetric Scaled Boundary Finite Element (AXI-SBFE) are derived in detail. For an arbitrary excitation frequency, the dynamic stiffness could be solved by a numerical integration method. The dynamic response of layered unbounded media has been verified with the literature. Numerical examples indicate the applicability and high accuracy of the new method.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media\",\"authors\":\"Mojtaba Aslmand, I. M. Kani\",\"doi\":\"10.22059/CEIJ.2019.263233.1503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetric Scaled Boundary Finite Element (AXI-SBFE) are derived in detail. For an arbitrary excitation frequency, the dynamic stiffness could be solved by a numerical integration method. The dynamic response of layered unbounded media has been verified with the literature. Numerical examples indicate the applicability and high accuracy of the new method.\",\"PeriodicalId\":43959,\"journal\":{\"name\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/CEIJ.2019.263233.1503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/CEIJ.2019.263233.1503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

用轴对称标度边界有限元法(AXI-SBFEM)的一个新公式推导了无界层状介质中的波传播。将一般的三维无界域划分为多个独立的二维无界域,可以通过显著减少所需的存储和计算时间来解决该问题。详细推导了相应的轴对称标度边界有限元(AXI-SBFE)的方程。对于任意的激励频率,动态刚度可以用数值积分法求解。层状无界介质的动力响应已得到文献的验证。数值算例表明了该方法的适用性和高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetric Scaled Boundary Finite Element (AXI-SBFE) are derived in detail. For an arbitrary excitation frequency, the dynamic stiffness could be solved by a numerical integration method. The dynamic response of layered unbounded media has been verified with the literature. Numerical examples indicate the applicability and high accuracy of the new method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信