向量场芽的完全横向正规形式

IF 0.4 Q4 MATHEMATICS
Soledad Ramírez-Carrasco, Percy Fernández-Sánchez
{"title":"向量场芽的完全横向正规形式","authors":"Soledad Ramírez-Carrasco, Percy Fernández-Sánchez","doi":"10.5269/bspm.46354","DOIUrl":null,"url":null,"abstract":"In this work, inspired by the technique of the complete transversal, used for the classification of plane branches, developed by Hefez, A. and Hernandes, M., as well as Bruce, J.W., Kirk, N.P. and du Plesis, A.A., study the singularities of applications, we establish a classification of vector fields through their normal forms. In the case of vector fields with non zero linear part in $(\\mathbb{C}^{2}, 0) $ and nilpotent fields in $(\\mathbb {C}^{n}, 0), n\\geq 2$ we recover the classical normal forms for those fields, and we provide a formal normal form different from Takens in dimension 2. Likewise, we obtain the normal form for the vector fields in $(\\mathbb{C},0)$ of any multiplicity.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete transversal and formal normal forms of germs of vector fields\",\"authors\":\"Soledad Ramírez-Carrasco, Percy Fernández-Sánchez\",\"doi\":\"10.5269/bspm.46354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, inspired by the technique of the complete transversal, used for the classification of plane branches, developed by Hefez, A. and Hernandes, M., as well as Bruce, J.W., Kirk, N.P. and du Plesis, A.A., study the singularities of applications, we establish a classification of vector fields through their normal forms. In the case of vector fields with non zero linear part in $(\\\\mathbb{C}^{2}, 0) $ and nilpotent fields in $(\\\\mathbb {C}^{n}, 0), n\\\\geq 2$ we recover the classical normal forms for those fields, and we provide a formal normal form different from Takens in dimension 2. Likewise, we obtain the normal form for the vector fields in $(\\\\mathbb{C},0)$ of any multiplicity.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.46354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.46354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,受Hefez, a .和Hernandes, M.以及Bruce, j.w., Kirk, N.P.和du Plesis, a.a.研究奇异性应用的完全横线技术的启发,我们通过它们的范式建立了向量场的分类。对于$(\mathbb{C}^{2}, 0) $中具有非零线性部分的向量场和$(\mathbb {C}^{n}, 0), n\geq 2$中具有幂零部分的向量场,我们恢复了这些场的经典范式,并给出了不同于2维Takens的形式范式。同样地,我们得到了$(\mathbb{C},0)$中任意倍数的向量场的标准形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete transversal and formal normal forms of germs of vector fields
In this work, inspired by the technique of the complete transversal, used for the classification of plane branches, developed by Hefez, A. and Hernandes, M., as well as Bruce, J.W., Kirk, N.P. and du Plesis, A.A., study the singularities of applications, we establish a classification of vector fields through their normal forms. In the case of vector fields with non zero linear part in $(\mathbb{C}^{2}, 0) $ and nilpotent fields in $(\mathbb {C}^{n}, 0), n\geq 2$ we recover the classical normal forms for those fields, and we provide a formal normal form different from Takens in dimension 2. Likewise, we obtain the normal form for the vector fields in $(\mathbb{C},0)$ of any multiplicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信